
Multiprocessor Scheduling with Memory Constraints:
Fundamental Properties and Finding Optimal Solutions

Pál András Papp

pal.andras.papp@huawei.com

Computing Systems Lab

Huawei Zurich Research Center

Zurich, Switzerland

Toni Böhnlein

toni.boehnlein@huawei.com

Computing Systems Lab

Huawei Zurich Research Center

Zurich, Switzerland

Albert-Jan N. Yzelman

albertjan.yzelman@huawei.com

Computing Systems Lab

Huawei Zurich Research Center

Zurich, Switzerland

Abstract
We study the problem of scheduling a general computational DAG

on multiple processors in a 2-level memory hierarchy. This set-

ting is a natural generalization of several prominent models in the

literature, and it simultaneously captures workload balancing, com-

munication, and data movement due to cache size limitations. We

first analyze the fundamental properties of this problem from a the-

oretical perspective, such as its computational complexity. We also

prove that optimizing parallelization and memory management

separately, as done in many applications, can result in a solution

that is a linear factor away from the optimum.

On the algorithmic side, we discuss a natural technique to rep-

resent and solve the problem as an Integer Linear Program (ILP).

We develop a holistic scheduling algorithm based on this approach,

and we experimentally study its performance and properties on a

small benchmark of computational tasks. Our results confirm that

the ILP-based method can indeed find considerably better solutions

than a baseline which combines classical scheduling algorithms

and memory management policies.

CCS Concepts
•Theory of computation→Parallel computingmodels; Sched-
uling algorithms; Integer programming.

Keywords
Multi-BSP, Scheduling, Red-blue pebble game, Limited memory,

Integer Linear Programming

1 Introduction
The efficient execution of complex computations is a fundamental

problem in parallel computing, with countless applications ranging

from scientific simulations to machine learning. In general, a static

computational task is often modeled as a Directed Acyclic Graph

(DAG), where the nodes represent the specific operations to exe-

cute, and the directed edges represent dependencies between them,

i.e. the output of one operation is required as an input for another.

These dependencies not only describe precedence constraints be-

tween the operations, but also imply data movement when the two

nodes are assigned to different processors.

©Pál András Papp, Toni Böhnlein and Albert-Jan N. Yzelman, 2025. This is the author’s

full version of the work, posted here for personal use. Not for redistribution. The

definitive version was published in the 54th International Conference on Parallel

Processing (ICPP 2025), https://doi.org/10.1145/3754598.3754676.

One of the most important aspects of this problem is to effi-

ciently parallelize the execution on multiple processors. This is in

itself a rather intricate task: we need to distribute the workload

in a balanced way between the processors, and, at the same time,

minimize the communication between them. These contradicting

objectives often lead to a delicate trade-off. Finding the best parallel

schedule for DAGs has been studied exhaustively, but for general

DAGs, most of these works focus on very simple models in order

to keep the problem tractable.

Another crucial aspect to optimize is the datamovement between

different levels of the memory hierarchy (vertical I/O). For instance,

since the size of the cache is limited, we may need to repeatedly

load values from RAM during the computation, which can be very

costly. The prominent tool to capture this cost for general DAGs in

a two-level memory hierarchy is the red-blue pebble game of Hong

and Kung [19]. However, due to the complexity of the problem,

most works in this model focus on I/O lower bounds for concrete

computational tasks.

When we aim to capture both parallel execution and memory

limitations at the same time, this leads to an even more complex

problem where finding the optimal schedule for general DAGs

is remarkably challenging. While there are several models in the

literature, like the Multi-BSP model of Valiant [44], which captures

all of these aspects, most of the results in these models focus on

the optimal scheduling of either a concrete (often very structured)

computational DAG from a specific application, or a small subclass

of DAGs at best. Hence, while the scheduling of general (irregular)

workloads in these more realistic models is a fundamental problem,

there is very little known about the theoretical properties of this

problem or its optimal solutions.

The main goal of our work is to analyze the problem of efficiently

scheduling a general computational DAG in a model that captures

both parallel execution and memory constraints. As a first step,

we define a natural new model for this problem that can be under-

stood either as the restriction of the Multi-BSP model to 2 levels on

general DAGs, or as the generalization of multiprocessor red-blue

pebbling to weighted DAGs. We refer to this DAG scheduling prob-

lem as MBSP scheduling, and we study its fundamental theoretical

properties: we show that even separate parts of this problem are

NP-hard, and that a synchronous and asynchronous interpretation

of the model can lead to very different optimal schedules.

We then consider a natural two-stage approach towards sched-

uling, which first aims to find an efficient parallel schedule without

the memory constraints, and then applies a cache management

policy on this schedule to minimize the I/O cost. This separation is

realistic in many application domains, where e.g. the scheduling

1

ar
X

iv
:2

50
7.

17
41

1v
1

 [
cs

.D
C

]
 2

3
Ju

l 2
02

5

https://orcid.org/0009-0005-6667-802X
https://orcid.org/0009-0001-2152-022X
https://orcid.org/0000-0001-8842-3689
https://arxiv.org/abs/2507.17411v1

Pál András Papp, Toni Böhnlein, and Albert-Jan N. Yzelman

and the memory management are optimized by different hard-

ware/software components. We prove that in the worst case, this

two-stage approach can return a schedule which is a linear factor

away from the actual optimum, even if both stages are optimal

separately. This indicates that for any theoretical guarantees, it is

crucial to use a holistic approach to the entire problem.

On the algorithmic side, we present a formulation of the sched-

uling task as an Integer Linear Program (ILP). We discuss several

techniques to make this approach more efficient on computational

DAGs of moderate size, including a divide-and-conquer technique

to split the problem into multiple smaller parts. We compare this

ILP-based scheduler to a two-stage baseline that combines a recent

multi-processor scheduling algorithm with a strong cache manage-

ment policy. Our experiments confirm that the holistic ILP-based

solution can indeed find significantly better schedules than the

baseline in many cases: in our main experiments, the ILP-based

scheduler obtains a 0.76× factor geometric-mean cost reduction

over the baseline. We also analyze how these improvements de-

pend on different parameters of the model, and our experiments

also provide interesting insights into some further aspects of DAG

scheduling problems.

Paper organization. After an overview of related work, Section 3

defines our scheduling model. Section 4 describes the two-stage

approach and our main theorem. Section 5 adds further theoretical

results. Section 6 describes our ILP-based approach, and Section 7

discusses our experimental results.

Note that in order to improve readability, many technical details

are deferred to the appendix. In particular, Appendix A discusses

the model definition in more detail, Appendix B contains the proof

details for our theorems, Appendix C elaborates on the ILP methods,

and Appendix D discusses the details of our experiments.

2 Related Work
The optimal parallel scheduling of computational DAGs has been

studied in countless works and numerous different models since

the 1960s. However, the vast majority of theoretical works on the

topic consider very simple models, such as (𝑃 |𝑝𝑟𝑒𝑐 |𝐶max), which
is essentially equivalent to the PRAM model without any com-

munication costs [6, 7, 14, 26, 28, 29, 40, 41], or (𝑃 |𝑝𝑟𝑒𝑐; 𝑐 |𝐶max),
where communication is only modeled by a fixed latency cost,

allowing to communicate any amount of data in this time win-

dow [9, 10, 17, 23, 27, 30, 31, 35, 45].

More sophisticated models, like BSP or LogP, are closely moti-

vated by real-world computing architectures, and thus capture the

actual scheduling cost much more accurately [1, 8, 18, 32, 42, 46].

However, finding the optimal schedules in these models for general

DAGs is very challenging. In these models, past research mostly

focuses on schedules and lower bounds for specific computational

DAGs from concrete applications, such as matrix multiplication [25,

33]. There are only a few exceptions that consider general DAGs,

which e.g. analyze the theoretical properties of BSP scheduling [38],

or experimentally evaluate heuristic schedulers in a custom BSP-

like model [34]. Most of these models also do not consider memory

limitations or I/O costs at all.

On the other hand, the red-blue pebble game captures the I/O

cost of executing a computation in a two-level memory hierarchy,

but only on a single processor [19]. The results on this model in-

clude I/O lower bounds for several concrete computations from

practice [12, 20, 24], as well as complexity and inapproximability

results for general DAGs [2, 4, 5, 11, 39]. There are also several

attempts to generalize this model to multiple processors or deeper

hierarchies [4, 16, 25], but this again leads to more complex models,

so authors mostly focus on special subclasses of DAGs or concrete

computational tasks when studying them. Besides the red-blue peb-

ble game, there are also several alternative models that define or

study I/O costs on specific subclasses of DAGs [13, 22].

The two closest models to ours in previous works are the Multi-

BSP model of Valiant [43, 44] and the multiprocessor red-blue peb-

ble game of Böhnlein et al. [4]. Multi-BSP is a generalization of

BSP to architectures of arbitrary depth; it is a very broad model

that captures all the aspects mentioned before. However, due to

this generality, the few works on the Multi-BSP model all focus on

the optimal execution of a highly structured computational DAG

from a concrete application. In particular, even with only 2 levels,

to our knowledge, Multi-BSP has not been studied or even rigor-

ously defined for general DAGs. On the other hand, multiprocessor

red-blue pebbling is a special case of our model that is restricted to

unit weights for both computation time and memory use, and to a

synchronous setting. The study of this model in [4] only focuses on

theoretical properties and complexity results, and does not consider

algorithms to find a good schedule.

3 Model definition
Our model can be best described by combining the terminology

of the Multi-BSP model and the red-blue pebble game. Similarly

to red-blue pebbling, we assume a two-level memory hierarchy,

where each processor has a fast memory (e.g. cache) of some limited

capacity 𝑟 , and the processors share a slow memory (e.g. RAM) of

unlimited capacity. We use red and blue pebbles on a node 𝑣 to

represent the fact that the output data of 𝑣 is currently kept in fast

and slow memory, respectively. We have a different kind of red

pebble for each processor (to denote the separate caches), but only

a single kind of blue pebble (for the shared RAM).

The input of a concrete MBSP problem instance consists of:

• a computational DAG 𝐺 = (𝑉 , 𝐸), where each node also

has a compute weight 𝜔 : 𝑉 → R≥0 (the time it takes to

execute the operation), and a memory weight 𝜇 : 𝑉 → R≥0
(the amount of memory its output requires);

• a computing architecture, consisting of a number of pro-

cessors 𝑃 ∈ Z>0, a fast memory capacity 𝑟 ∈ R≥0 that

is identical for each processor, and the global parameters

𝑔, 𝐿 ∈ R≥0 of the BSP model, where 𝑔 is the cost of sending

a single unit of data, and 𝐿 is the cost of synchronization

between the processors.

We denote the number of nodes in the DAG by 𝑛= |𝑉 |, and we refer
to processors by numbering them from 1 to 𝑃 . In general, we will

also use [𝑧] as a shorthand notation for the set of integers {1, ..., 𝑧}.

3.1 Transition rules and pebbling sequence
The current state of our schedule can described by a configuration

𝜁 = (𝑅1, ..., 𝑅𝑃 , 𝐵), where 𝑅𝑝 is the set of nodes with a red pebble of

2

Multiprocessor Scheduling with Memory Constraints: Fundamental Properties and Finding Optimal Solutions

processor 𝑝 ∈ [𝑃] (i.e. values currently in the cache of processor 𝑝),

and 𝐵 is the set of nodes with a blue pebble (i.e. values in RAM). We

require that every configuration in our schedule fulfills the memory

bound, i.e.

∑
𝑣∈𝑅𝑝

𝜇 (𝑣) ≤ 𝑟 for all 𝑝 ∈ [𝑃].
In the initial configuration of our schedule, 𝐵 only contains the

source nodes of the DAG (i.e., the inputs of the computation), and

𝑅𝑝 = ∅ for all 𝑝 ∈ [𝑃]. By the terminal configuration, we need to

have all the sink nodes of the DAG (i.e., the outputs) contained in

𝐵. During the schedule, we can use the following transition rules

to move from the current to the next configuration:

(1) LOAD𝑝,𝑣 : if node 𝑣 already has a blue pebble, then place

a red pebble of processor 𝑝 on 𝑣 . The cost of this rule is

𝑐𝑜𝑠𝑡 (LOAD𝑝,𝑣) = 𝜇 (𝑣) · 𝑔.
(2) SAVE𝑝,𝑣 : if node 𝑣 already has a red pebble of processor

𝑝 , then place a blue pebble on 𝑣 . The cost of this rule is

𝑐𝑜𝑠𝑡 (SAVE𝑝,𝑣) = 𝜇 (𝑣) · 𝑔.
(3) COMPUTE𝑝,𝑣 : if 𝑣 is not a source node, and all the parents

of 𝑣 have a red pebble of processor 𝑝 , then place a red

pebble of processor 𝑝 also on 𝑣 . The cost of this rule is

𝑐𝑜𝑠𝑡 (COMPUTE𝑝,𝑣) = 𝜔 (𝑣).
(4) DELETE𝑝,𝑣 : remove a red pebble of processor 𝑝 from any

node 𝑣 . The cost of this rule is 𝑐𝑜𝑠𝑡 (DELETE𝑝,𝑣) = 0.

A pebbling sequence on processor 𝑝 is a sequence of configura-

tions (𝜁0, 𝜁1, ..., 𝜁𝑇), or equivalently, a sequence of transition rules

Ψ𝑝 = (𝜏1, ..., 𝜏𝑇) from the list above, such that 𝜁𝑖 can be obtained

from 𝜁𝑖−1 by using transition rule 𝜏𝑖 , for all 𝑖 ∈ [𝑇]. Recall that all
configurations 𝜁𝑖 must fulfill the memory bound. The cost of the

sequence is understood simply as

∑
𝑖∈[𝑇] 𝑐𝑜𝑠𝑡 (𝜏𝑖).

3.2 Supersteps and schedule
Similarly to Multi-BSP, our schedule is organized into supersteps,

each ofwhich consists of a computation and a communication phase.

This is a natural way to form schedules in a synchronous model like

(Multi-)BSP. For our asynchronousmodel variant, we also define our

schedules in the same fashion for the sake of simplicity; however,

the splitting into computation and communication phases plays no

role in this case.

Let us define a superstep on processor 𝑝 as a pebbling sequence

Ψ𝑝 that can be obtained by concatenating four subsequences:

Ψ𝑝 = Ψ𝑐𝑜𝑚𝑝 ◦ Ψ𝑠𝑎𝑣𝑒 ◦ Ψ𝑑𝑒𝑙 ◦ Ψ𝑙𝑜𝑎𝑑 ,

where

• Ψ𝑐𝑜𝑚𝑝 only consists of COMPUTE𝑝,𝑣 and DELETE𝑝,𝑣 steps,

• Ψ𝑠𝑎𝑣𝑒 only consists of SAVE𝑝,𝑣 steps,

• Ψ𝑑𝑒𝑙 only consists of DELETE𝑝,𝑣 steps,

• Ψ𝑙𝑜𝑎𝑑 only consists of LOAD𝑝,𝑣 steps.

Note that more in line with the BSP model, we could also sim-

ply assume Ψ𝑝 = Ψ𝑐𝑜𝑚𝑝 ◦ Ψ𝑐𝑜𝑚𝑚 , where Ψ𝑐𝑜𝑚𝑝 only consists of

compute and delete steps, and Ψ𝑐𝑜𝑚𝑚 only consists of save, load

and delete steps. However, such pebbling can always be reordered

into a sequence of the form Ψ𝑐𝑜𝑚𝑚 = Ψ𝑠𝑎𝑣𝑒 ◦ Ψ𝑑𝑒𝑙 ◦ Ψ𝑙𝑜𝑎𝑑 without

affecting its validity or increasing its cost.

A superstep Ψ is then a tuple Ψ = (Ψ1, ...,Ψ𝑃), where Ψ𝑝 is a

superstep on processor 𝑝 for 𝑝 ∈ [𝑃]. We point out that the formal

definition here is actually a bit more technical, since the set 𝐵 is

shared among the processors, and hence the pebbling sequences

of different processors are not independent. However, the set 𝐵 is

only modified during the Ψ𝑠𝑎𝑣𝑒 phase and only queried during the

Ψ𝑙𝑜𝑎𝑑 phase. As such, we can formally define pebbling sequences

using a separate artificial set 𝐵𝑝 for each processor, and then setting

𝐵𝑝 ←
⋃

𝑝∈[𝑃] 𝐵𝑝 at the end of the subsequence Ψ𝑠𝑎𝑣𝑒 . We defer

the details of this formal definition to the full version of the paper.

Finally, a MBSP schedule is a sequence of supersteps

𝑆 = (Ψ(1) ,Ψ(2) , ...,Ψ(𝑚))
such that the finishing configuration of Ψ(𝑖) is identical to the

starting configuration of Ψ(𝑖+1) for all 𝑖 ∈ [𝑚− 1], and furthermore,

Ψ(1) starts with an initial configuration, and Ψ(𝑚) ends with a

terminal configuration.

3.3 The cost of a schedule
It only remains to define the cost function we aim to minimize

in our problem. We discuss both a synchronous and an asynchro-

nous interpretation of our schedules, which only differ in the cost

function used to evaluate the total timespan of a schedule. The

synchronous cost is very close to the (Multi-)BSP model in spirit:

it considers the concrete superstep structure of our schedule, and

also uses the synchronization parameter 𝐿. In contrast to this, the

asynchronous cost is more similar to makespan metrics in classical

scheduling models like (𝑃 |𝑝𝑟𝑒𝑐 |𝐶max).
In the synchronous case, the cost of a superstep Ψ can be simply

defined as

𝑐𝑜𝑠𝑡 (Ψ) = max

𝑝∈[𝑃]
𝑐𝑜𝑠𝑡 (Ψ𝑐𝑜𝑚𝑝) + max

𝑝∈[𝑃]
𝑐𝑜𝑠𝑡 (Ψ𝑠𝑎𝑣𝑒) +

+ max

𝑝∈[𝑃]
𝑐𝑜𝑠𝑡 (Ψ𝑙𝑜𝑎𝑑) + 𝐿 ,

and the cost of the whole schedule 𝑆 is simply the sum of these

costs over all supersteps, i.e.

∑
𝑖∈[𝑚] 𝑐𝑜𝑠𝑡 (Ψ(𝑖)).

In the asynchronous case, we inductively define the finishing

time 𝛾 of each transition step in our schedule. Consider the entire

sequence of transitions (𝜏1,, 𝜏𝑇) on a given processor 𝑝 over all

the supersteps. Let 𝛾 (0) = 0. For any transition 𝜏𝑖 , we set

• 𝛾 (𝜏𝑖) = 𝛾 (𝜏𝑖−1) + 𝑐𝑜𝑠𝑡 (𝜏𝑖), when 𝜏𝑖 is a save, compute or

delete operation,

• 𝛾 (𝜏𝑖) = max(𝛾 (𝜏𝑖−1) , Γ(𝑣)) + 𝑐𝑜𝑠𝑡 (𝜏𝑖) when 𝜏𝑖 is a load

operation,

where Γ(𝑣) is an auxiliary function to define the time when a node

𝑣 first becomes available in slow memory. More specifically, we

consider the first superstep that has a SAVE𝑝,𝑣 transition for 𝑣 ,

and we define Γ(𝑣) as the finishing time 𝛾 (𝜏) of the first such

transition step. This way, 𝛾 (𝜏𝑖) is indeed always well-defined in a

valid schedule, and it expresses the time when 𝜏𝑖 is finished in an

asynchronous execution of the schedule.

Finally, if we use 𝜏𝑇
(𝑝)

to denote the last transition on processor

𝑝 , then the asynchronous cost of the whole schedule 𝑆 is defined

simply as max𝑝∈[𝑃] 𝛾 (𝜏𝑇 (𝑝)).

4 The two-stage approach
On a high level, MBSP scheduling can also be understood as the

combination of two problems. Firstly, we need to find an efficient

3

Pál András Papp, Toni Böhnlein, and Albert-Jan N. Yzelman

parallel schedule, i.e. decide which subtasks to execute on specific

processors and time steps, in order to balance the workload but also

minimize communication. Secondly, we need to develop a cache

management policy on each processor, i.e. decide which values

to load and evict throughout the schedule to satisfy the memory

constraint, but also keep I/O costs low.

In general, these two subproblems are heavily interconnected:

the memory constraints can also drastically influence the optimal

way to develop the parallel schedule. However, in many practical

cases, e.g. when the cache management policy of a system cannot

be influenced directly, we have no other option than to handle

these two stages separately. Since multiprocessor scheduling and

red-blue pebbling are both rather challenging, it is also tempting

from the algorithmic side to separate the two problems. That is,

given an input problem, we can

• first find a good multi-processor schedule for the DAG, ac-

cording to e.g. the BSP model, not considering the memory

bound at this stage, and then

• find a good memory management policy for each of the

processors in this schedule, to minimize I/O cost under the

given memory constraint.

Our main goal is to compare this two-stage method to directly

finding an optimal schedule for the MBSP problem as a whole.

Note that it requires a further technical step to convert such a

two-step solution to anMBSP schedule. In particular, the supersteps

of the BSP schedule from the first stage may need to be further split

up to obtain MBSP supersteps: in order to execute the sequence

of computations in a given compute phase, we may need further

I/O operations in-between to load new values from slow memory.

In our implementations, we also use such a conversion: we form

new supersteps for MBSP by splitting each BSP compute phase into

maximally long segments of compute steps that can still be executed

without a new I/O operation. The resulting compute phases ensure

that a valid MBSP schedule exists; we can then combine this with a

cache management policy in the second stage, always loading the

new values needed for the next superstep, and evicting e.g. the least

recently used values when required by the memory constraint.

4.1 Proof of suboptimality
As our main theoretical result, we show that this two-stage ap-

proach has strong limitations: in the worst case, the resulting cost

is very far from the optimum.

Theorem 4.1. The two-phase approach can return a solution that
is a Θ(𝑛) factor away from the optimum, even if both phases are
optimal separately.

Proof sketch. Consider a modified version of the construction

from [39]. For some parameter 𝑑 = Θ(𝑛), we take two groups 𝐻1,

𝐻2 of 𝑑 source nodes each, and two chains of length𝑚 each. The

chain nodes also have incoming edges from the two groups 𝐻1, 𝐻2

in an alternating fashion, as shown in Figure 1. The construction

allows us to set 𝑚 = Θ(𝑛) and 𝑑 = Θ(𝑛). Let the cache size be

𝑟 = 𝑑 + 2, let us have 𝑃 = 2 processors, and 𝑔 = 𝑂 (1), 𝐿 = 0. Our

proof holds for both the synchronous and asynchronous cost model.

If we ensure that 𝑑 ·𝑔 < 𝑚, then the optimal scheduling strategy

in the BSP models is to assign a separate chain to both processors.

...

...

𝑑
n
o
d
e
s

𝑑
n
o
d
e
s

Figure 1: Example construction for Theorem 4.1 where the
two-stage approach returns a schedule of significantly higher
cost than the actual optimum.

1

1

1

12

2

2

2

two-stage approach

1 1 1 1

2 2 2 2

optimal schedule

Figure 2: Illustration of the assignments of chain nodes to the
two processorswith the two-stage approach and the optimum
schedule, in the construction of Figure 1.

Intuitively, this means that the processors can compute along their

respective chains without any communication. This has a compute

cost of𝑚, and a communication cost of only 𝑑 ·𝑔 in the beginning to

get the values of𝐻1 and𝐻2 to both processors (with some technical

details depending on the concrete BSP variant). One can show

that the alternative schedules indeed all yield a higher cost. If we

use the two processors to compute all the children of 𝐻1 and 𝐻2,

respectively, then every chain node needs to be sent to the other

processor, giving a higher communication cost of 2 ·𝑚 ·𝑔. If we
compute both chains on the same processor, this increases the

compute cost by 𝑚, so it is also suboptimal if 𝑑 ·𝑔 < 𝑚. A more

detailed case analysis is deferred to the full version of the paper.

Given this best BSP schedule from the first stage, if we set 𝑟 =

𝑑+2, then any caching policy needs to repeatedly alternate between
loading the values of 𝐻1 and 𝐻2 from slow memory, resulting in a

total of 𝑑 ·𝑚 I/O operations in an MBSP schedule.

In contrast to this, an optimal MBSP schedule can assign all

children of 𝐻1 to one processor, and all children of 𝐻2 to the other.

The compute cost here is again𝑚, but each chain node only incurs

two I/O steps: the processors exchange the last computed chain

node values by saving them into slow memory and then loading

the value saved by the other processor. With that, the total I/O cost

in the schedule is only (2·𝑚 + 𝑑) · 𝑔. The two assignments of the

chain nodes are also illustrated in Figure 2.

This means that altogether, the cost ratio between the two-stage

approach and the optimum is

𝑚 + (𝑑 ·𝑚) · 𝑔
𝑚 + (2 ·𝑚 + 𝑑) · 𝑔 .

4

Multiprocessor Scheduling with Memory Constraints: Fundamental Properties and Finding Optimal Solutions

We can lower bound the numerator by 𝑑 ·𝑚·𝑔, and upper bound the
denominator by 4·𝑚 ·𝑔 if we have𝑚≥𝑑 and 𝑔≥ 1, thus obtaining
a ratio of at least

𝑑
4
. With Θ(𝑑) = Θ(𝑛) in the construction, this is

indeed a linear factor difference. □

We note that the construction above has uniform node weights

and 𝐿 = 0, so the result also carries over to the simpler model of

multiprocessor red-blue pebbling [4]. The example is also easy to

generalize to any constant number of processors 𝑃 ≥ 3.

5 Further Fundamental Properties
5.1 Computational Complexity
One natural question about our scheduling problem is its complex-

ity. Unsurprisingly, finding the optimum is very challenging: since

MBSP generalizes multi-processor pebbling, it follows from [4] that

it is already NP-hard on simple classes of DAGs, and does not allow

a polynomial-time approximation scheme.

As for the parts of the two-stage approach, the complexity of

the scheduling stage has been thoroughly studied, and it is also

known to be NP-hard [38]. However, surprisingly, we are not aware

that the complexity of the memory management stage has been

analyzed before. More specifically, assume that the compute steps

in the phases Ψ𝑐𝑜𝑚𝑝 of our MBSP schedule are already fixed for

each processor and superstep, but we are still free to choose all the

save, delete and load operations throughout the schedule. Our goal

is to minimize the total (synchronous) cost of the Ψ𝑠𝑎𝑣𝑒 and Ψ𝑙𝑜𝑎𝑑
phases over the whole schedule.

Note that in the uniform-weight case when𝜔 (𝑣) = 1 for all 𝑣 , the

best strategy is simply that whenever we need to evict a value from

cache, we select the value which is not needed for the longest time

(known as Bélády’s optimal algorithm or Clairvoyant algorithm).

This can easily be computed in polynomial time. However, with

general node weights, the problem immediately becomes NP-hard.

Lemma 5.1. With 𝑃 = 1, the memory management problem is
weakly NP-hard.

Lemma 5.2. With 𝑃 ≥ 2, the memory management problem is
strongly NP-hard.

Proof sketch. The lemmas can be shown with relatively stan-

dard reductions techniques from the number partitioning and 3-

partitioning problems, respectively.

On a high level, for Lemma 5.1, given integers {𝑎1, ..., 𝑎𝑚} that
sum up to 𝛼 , we can create nodes 𝑣1, ..., 𝑣𝑚 and 𝑣 ′ with memory

weights 𝑎1, ..., 𝑎𝑚 and
𝛼
2
, respectively, and ensure that first the

nodes 𝑣1, ..., 𝑣𝑚 are needed in cache, then only 𝑣 ′, and then 𝑣1, ..., 𝑣𝑚
again. If there is a subset of {𝑎1, ..., 𝑎𝑚} that sums up to exactly

𝛼
2
,

then we can leave these nodes in cache when loading 𝑣 ′, and only

reload nodes of total weight
𝛼
2
afterwards. Otherwise, the total

loading cost for the third computation is larger than
𝛼
2
.

For Lemma 5.2, given integers {𝑎1, ..., 𝑎3·𝑚} that sum up to 𝛼 ·𝑚,

we create nodes with memory weights 𝑎1, ..., 𝑎3·𝑚 , respectively,

which are all needed in cache on processor 1 by superstep (𝑚 + 1).
We ensure that processor 2 is always loading a weight of 𝛼 in

the first𝑚 communication phases, and hence we can only avoid

increasing the total costs if we can partition our weights into𝑚

distinct subsets that each sum up to exactly 𝛼 . □

5.2 Synchronous vs. Asynchronous Optimum
Another interesting aspect is how the synchronous and asynchro-

nous cost functions relate to each other. The two costs can only be

fairly compared when 𝐿 = 0, i.e. without synchronization costs. In

this case, for any given schedule, the asynchronous cost is always

at most as high as the synchronous cost.

One natural question here is how different the two optimal solu-

tions can be from each other: if we find the optimum for synchro-

nous cost, then in terms of asynchronous cost, how far away can

this be from the optimum, and vice versa?

We show in two simple examples that this difference is indeed

notable. We first begin with the case when we optimize for asyn-

chronous cost, and evaluate this with respect to synchronous cost.

Lemma 5.3. Consider an optimal solution for asynchronous cost.
For synchronous cost, this can be a 𝑃

2
−𝜀 factor away from the optimum,

for any 𝜀 >0.

In the reverse case, showing such a high factor difference is more

challenging. Instead, we present a simpler example that already

demonstrates a 1.33 factor.

Lemma 5.4. Consider an optimal solution for synchronous cost. For
asynchronous cost, this can be a 4

3
−𝜀 factor away from the optimum,

for any 𝜀 >0.

On a high level, Lemma 5.3 uses a construction where we sort

our 𝑃 processors into
𝑃
2
pairs, and each pair of processors has a very

costly computation in a different one of
𝑃
2
supersteps. The optimal

asynchronous solution does not care about aligning the supersteps

for the different processor pairs, since they do not affect each other.

However, with synchronization, the same solution incurs a high

cost in each of the
𝑃
2
supersteps, and it is much better instead to

place the costly computations all in the same superstep.

In Lemma 5.4, we use a simpler construction with only a few

nodes, where the synchronous model motivates us to place two

large computations into the same superstep in order to only have

one superstep of high cost; however, this results in an unnecessary

increase with respect to asynchronous cost.

6 An ILP-based solution
One promising approach to solve a problem as complex as MBSP

scheduling is to formulate it as an Integer Linear Program (ILP),

and apply a modern ILP solver to find a solution. Naturally, the

ILP representation of the problem requires a very high number of

variables, and as such, this is only viable on moderate-sized DAGs.

However, even on these smaller DAGs, the returned schedules

can give us vital insights into the properties of the problem. In

this section, we outline this ILP-based technique and discuss some

fundamental optimizations on it.

6.1 ILP representation
The key binary variables in the natural ILP representation indicate

the main aspects of a pebbling sequence. In particular, for each node

𝑣 , processor 𝑝 and time step 𝑡 , we introduce variables compute𝑝,𝑣,𝑡 ,

save𝑝,𝑣,𝑡 and load𝑝,𝑣,𝑡 to indicate whether node 𝑣 is computed on

𝑝 , saved to RAM from 𝑝 , or loaded into the cache of 𝑝 , respectively,

in time step 𝑡 . Besides this, we also add variables hasred𝑝,𝑣,𝑡 and

5

Pál András Papp, Toni Böhnlein, and Albert-Jan N. Yzelman

hasblue𝑣,𝑡 to indicate whether node 𝑣 contains a red pebble of

processor 𝑝 or a blue pebble, respectively, in the beginning of time

step 𝑡 . The deletion operations are not directly represented as steps

in this ILP; instead, they are captured implicitly when we have

hasred𝑝,𝑣,𝑡 = 1, but hasred𝑝,𝑣,(𝑡+1) = 0.

Given these variables, the fundamental properties of the schedule

can be expressed naturally with linear constraints. The fundamental

constraints are summarized in Figure 3. For instance, the prerequi-

sites of specific operations are ensured via the constraints in lines

(1)–(3). Constraints (4)–(5) define how we can obtain a new pebble

on a node. Constraint (6) ensures that a processor only executes a

single operation in each step. The memory bound is enforced via

line (7). Finally, constraints (8)–(10) enforce the appropriate initial

and terminal state.

The ingredients of the cost functions can also be expressed with

further auxiliary variables and linear constraints, but this is more

technical. The asynchronous cost function is the simpler case: here

we need continuous variables finishtime𝑝,𝑡 and getsblue𝑣 to ful-

fill the roles of the functions 𝛾 and Γ, respectively. We need to

enforce that finishtime𝑝,𝑡 − finishtime𝑝,(𝑡−1) is always larger
than the cost of step 𝑡 , which can be expressed simply as∑︁

𝑣

𝜔 (𝑣) · compute𝑝,𝑣,𝑡 + 𝑔 · 𝜇 (𝑣) · (save𝑝,𝑣,𝑡 + load𝑝,𝑣,𝑡) .

For the dependence on the slow memory, we also have

getsblue𝑣 ≥ finishtime𝑝,𝑡 −𝑀 · (1 − save𝑝,𝑣,𝑡) ,
where 𝑀 is large synthetic parameter, so the constraint only has

any effect when save𝑝,𝑣,𝑡 = 1. This motivates the ILP solver to save

each node only once; the finishing time of this step becomes a lower

bound on getsblue𝑣 . Similarly, the constraint

finishtime𝑝,𝑡 ≥ getsblue𝑣 + 𝑔 · 𝜇 (𝑣) −𝑀 · (1 − load𝑝,𝑣,𝑡)
expresses that if load𝑝,𝑣,𝑡 = 1, then this operation can only start

at getsblue𝑣 , and hence it finishes at getsblue𝑣 + 𝑔 · 𝜇 (𝑣) at the
earliest. Finally, a continuous variable makespan is used with the

constraints finishtime𝑝,𝑡 ≤ makespan, and the objective function

of the ILP is simply to minimize this makespan.

The synchronous model is significantly more complex, since we

need to capture the separate supersteps in the schedule to express

the cost function. On a high level, we first create binary variables

compphase𝑡 , savephase𝑡 and loadphase𝑡 to indicate the type of

each time step 𝑡 . The constraints ensure e.g. that compphase𝑡 = 1

if we have compute𝑝,𝑣,𝑡 = 1 for any 𝑣 and 𝑝 , and we can also

ensures with compphase𝑡 + savephase𝑡 + loadphase𝑡 ≤ 1 that

the schedule is synchronous.

We then define binary variables compends𝑡 to identify the end-

points of each compute phase using compends𝑡 ≤ compphase𝑡 and

compends𝑡 ≥ compphase𝑡 − compphase(𝑡+1) . Then a continuous

variable compuntil𝑝,𝑡 is used to keep summing up the compute

costs of subsequent steps on processors 𝑝 , but we allow to reset this

sum to 0 right before the beginning of each compute phase (when

commends𝑡 = 1). Specifically, compuntil𝑝,𝑡 is lower bounded by

compuntil𝑝,(𝑡−1) +
∑︁
𝑣

𝜔 (𝑣) · compute𝑝,𝑣,𝑡 −𝑀 · commends𝑡 .

Finally, we define a continuous variable compinduced𝑡 which takes

the maximal value of these summed-up costs when we are in the

last step of a compute phase, and can be set to 0 otherwise:

compinduced𝑡 ≥ compuntil𝑝,𝑡 −𝑀 · (1 − compends𝑡) .

The I/O costs can be expressed in a very similar way. The overall

objective of the ILP problem is then to minimize∑︁
𝑡

compinduced𝑡 + comminduced𝑡 + 𝐿 · commends𝑡 .

For more details on the ILP representation, we refer the reader to

the full version of the paper, or the source codes of the algorithms.

6.2 The number of time steps
Note that one crucial degree of freedom in this ILP representation

is the upper bound 𝑇 on the number of time steps allowed. While a

too small𝑇 may exclude the optimal solution, an unnecessarily high

𝑇 creates too many variables in our ILP. In order to significantly

reduce the number of time steps, we apply step merging: we allow to

combine multiple steps of our MBSP schedule into a single ILP time

step. Indeed, for I/O operations, we can allow to save and/or load

multiple values in the same step if all their prerequisites are satisfied

simultaneously beforehand. Similarly, we can merge consecutive

compute operations on a processor into a single step if all their

inputs and outputs fit into cache simultaneously, even when there

is a precedence relation between the nodes. Naturally, this step

merging also requires to significantly adapt many of the constraints

in our ILP accordingly.

The choice of 𝑇 also raises an interesting side question: if we

happen to select 𝑇 too small and accidentally exclude the optimal

solution, is there a simple way to notice this? For instance, if our ILP

schedule contains an empty step with no operation, then one might

assume that the solution is indeed optimal, since the solver decided

not to use this step. We show that somewhat counter-intuitively,

this is not the case.

Lemma 6.1. Assume that the optimal schedule of the ILP restricted
to𝑇0 steps has cost𝐶0 and contains an empty step. It can happen that
for some 𝑇 > 𝑇0, the optimal ILP schedule restricted to 𝑇 steps has a
smaller cost 𝐶 < 𝐶0.

This lemma already holds for 𝑃 = 1 and uniform node weights.

On a high level, the proof uses a construction where some I/O steps

in our schedule can be substituted by re-computing a chain of 𝑑

nodes instead. This reduces the total cost by 𝑔 − 𝑑 , but requires
(𝑑 − 1) further steps (which also cannot be merged). Altogether,

this means that if 𝑔 ≥ 𝑑 and if we select𝑇 appropriately, then it can

happen that the ILP schedule contains up to (𝑑 − 2) empty steps,

but it is still suboptimal.

6.3 Divide-and-Conquer method
The number of variables in the above ILP representation scales with

the number of nodes, processors and time steps, and thus even with

very powerful modern ILP solvers, it already becomes untractable

for DAGs with a few hundred nodes in practice. We also present a

divide-and conquer method to extend the ILP-based approach to

slightly larger DAGs. This consists of the following steps:

1) First, our goal is to partition the input DAG into smaller parts

such that the corresponding quotient graph remains acyclic.

6

Multiprocessor Scheduling with Memory Constraints: Fundamental Properties and Finding Optimal Solutions

load𝑝,𝑣,𝑡 ≤ hasblue𝑣,𝑡 ∀ 𝑣 , 𝑝 , 𝑡

save𝑝,𝑣,𝑡 ≤ hasred𝑝,𝑣,𝑡 ∀ 𝑣 , 𝑝 , 𝑡

compute𝑝,𝑣,𝑡 ≤ hasred𝑝,𝑢,𝑡 ∀ 𝑝 , 𝑡 , ∀ (𝑢, 𝑣) ∈𝐸

hasred𝑝,𝑣,𝑡 ≤ hasred𝑝,𝑣,(𝑡−1) + compute𝑝,𝑣,(𝑡−1) + load𝑝,𝑣,(𝑡−1) ∀ 𝑣 , 𝑝 , ∀ 𝑡 ≥ 1

hasblue𝑣,𝑡 ≤ hasblue𝑣,(𝑡−1) +
∑
𝑝 save𝑝,𝑣,(𝑡−1) ∀ 𝑣 , 𝑝 , ∀ 𝑡 ≥ 1

1 ≥ ∑
𝑣

(
compute𝑝,𝑣,𝑡 + save𝑝,𝑣,𝑡 + load𝑝,𝑣,𝑡

)
∀ 𝑝 , 𝑡

𝑟 ≥ ∑
𝑣 𝜇 (𝑣) · hasred𝑝,𝑣,𝑡 ∀ 𝑝 , 𝑡

hasred𝑝,𝑣,0 = 0 ∀ 𝑣 , 𝑝

hasblue𝑣,0 = 1 if 𝑣 is a source, 0 otherwise ∀ 𝑣∑
𝑡 hasblue𝑣,𝑡 = 1 ∀ sink node 𝑣(10)

(9)

(8)

(7)

(6)

(5)

(4)

(3)

(2)

(1)

Figure 3: Fundamental linear constraints in the ILP formulation of MBSP scheduling.

This allows us to develop a schedule for each part indepen-

dently according to a topological order of the parts. We also

want to have as few edges as possible between the separate

parts; intuitively, this helps to ensure that the subproblems can

indeed be solved independently without a major negative effect

on the combined schedule. This acyclic partitioning problem

can also be expressed as an ILP, like many graph partitioning

problems before [21]. Moreover, the size of this ILP problem

is drastically smaller than that of a scheduling problem on the

same DAG, since we now do not have a time dimension in our

variables. Indeed, our experiments also showed that for acyclic

partitioning problemswith only two parts, the ILP solver almost

always found the optimum solution in negligible time. Hence

as our first step, we use this ILP-based acyclic bipartitioning

method to recursively split the DAG into smaller subDAGs,

until each of our subDAGs consist of at most 60 nodes.

2) We then develop a high-level ‘scheduling plan’ for the parti-

tioned DAG by considering the quotient graph, and using an

adjusted version of the BSPg scheduling heuristic [36] that al-

lows to assign multiple processors to a specific node to reduce

its computation time proportionally. This gives us a high-level

schedule on the quotient DAG, defining which set of processors

will be used for each subproblem. For DAGs that are close to

sequential, this may simply mean that we consider the parts

in topological order, and use all available processors in each

subproblem. However, when the subDAGs are more parallel to

each other, the available processors may be split between the

given subproblems.

3) We then consider the subproblems (i.e., subDAGs and subsets

of processors) in a topological order, and use our ILP-based

scheduler to find a good schedule for each of these subprob-

lems. Note that when solving these MBSP subproblems, we also

require further modifications to the ILP representation above:

for instance, some nodes might already have a red pebble in

the beginning (leftover from the previous subschedule), and

non-sink nodes may also require a blue pebble by the end of the

schedule (if they have children in a following subDAG). Note

that in each subproblem, we always allow to use the entire

cache capacity of the given processors.

4) Finally, the subDAG schedules are concatenated into an MBSP

schedule for the whole problem. A few more technical steps are

executed to streamline this combined schedule, and to remove

some unnecessary steps that were created due to the split.

Note that this divide-and-conquer ILP is more of a heuristic

approach to the problem: even if all subILPs are solved to optimality,

this does not ensure that the combined MBSP schedule is a global

optimum. Indeed, the ILPs now only capture specific parts of the

problem, and they may ignore e.g. that some values would be vital

to keep in cache for the following subDAG. Our experiments also

confirm that on some DAGs, this method can return a worse MBSP

schedule than the baseline. Nonetheless, when we manage to split

the DAG into relatively disjoint parts, the divide-and-conquer ILP

often allows to find notably better schedules on larger instances.

7 Experiments and results
7.1 Experimental setup
For our experiments, we compare the above ILP-based schedulers

to a two-stage approach. For the scheduling stage, we use the recent

BSPg scheduling heuristic designed for the BSP model [36], which

focuses both on workload balancing and minimizing communica-

tion. For the memory management stage, we use the clairvoyant

algorithm that considers all the following compute steps on the

same processor, and whenever having to evict a value from cache,

it selects the value that is not required for the longest time. Both of

these algorithms excel at their respective task. We will also briefly

consider two-stage baselines based on some other algorithms: the

Cilk work-stealing heuristic [3], an ILP-based BSP-scheduler, and

the ‘least recently used’ (LRU) cache eviction rule.

To compare the schedulers, we use the computational DAG

benchmark introduced in [36]. The smallest dataset here consists

of 15 DAGs between 40 and 80 nodes, describing a variety of linear

algebra and graph computations. In particular, 3 of the DAGs are

7

Pál András Papp, Toni Böhnlein, and Albert-Jan N. Yzelman

coarse-grained representations of specific algorithms (BiCGSTAB,

𝑘-means, Pregel), and the others are more fine-grained instances of

four specific problems (CG, SpMV, iterated SpMV and 𝑘-NN). The

dataset has compute weights 𝜔 , but not memory weights 𝜇, hence

we add uniform random memory weights from {1, ..., 5} to each

node of the DAGs.

Since the efficiency of the ILP method can be significantly im-

proved by starting from a good initial solution, we initialize the

solvers with our baseline, and study how much our ILP schedulers

can further improve on this solution. The size of the DAGs allows

us to use the full ILP formulation from Section 6.1.

We also consider a sample from the second smallest dataset

in [36], taking the two smallest instances for each DAG type (coarse-

grained, CG, SpMV, iterated SpMV, 𝑘-NN). This gives us 10 DAGs

between 264 and 464 nodes, where applying the full ILP formulation

is not viable anymore; we use this dataset to study the divide-and-

conquer ILP.

Due to the relatively small DAGs, we use 𝑃 = 4 processors for

most experiments. For each DAG in our experiments, we define

the select size 𝑟 with respect to the minimal memory 𝑟0 required

to allow a valid schedule on the DAG (i.e. 𝑟0 the maximal sum of

memory weights for a node and its parents). In particular, in our

main experiments, we set 𝑟 =3·𝑟0 for each DAG. For the rest of the

BSP parameters, we pick 𝑔=1 and 𝐿=10, similarly to [36].

For solving the actual ILP problems, we use the COPT (Cardinal

Optimizer) commercial ILP solver [15], version 7.1.7. This is a state-

of-the-art commercial solver that uses several threads in parallel

to optimize the problem. For the ILP representations of the entire

scheduling problem, we run the solver with a time limit of 60

minutes; in case of the divide-and-conquer approach, we apply a

time limit of 30 minutes to each subproblem. This is typically not

enough to run the solving process to optimality, but already allows

to find very good solutions.

We run our experiments on an AMD EPYC 7763 processor, using

64 cores and 156 GB of memory. The implementations of our algo-

rithms, the baselines and the test suite are available open-source

as part of our OneStopParellel scheduling framework on GitHub:

https://github.com/Algebraic-Programming/OneStopParallel.

7.2 Results
In general, our results show that the holistic ILP-based method can

often find notably better schedules than the two-stage baseline. In

particular, in our main experiments with the default parameter val-

ues, the ILPs obtain a 0.77× factor geometric-mean reduction in the

synchronous costs compared to the baselines, which ranges from

0.99× to 0.6× on the concrete instances. The cost of the baseline

and the ILP schedules for each instance is listed for completeness

in Table 1. The reduction factors for this base case (and several of

the following cases) are also illustrated in Figure 4.

In order to gain a deeper understanding of the problem, we ana-

lyze how these improvement factors depend on different parameters

of the model. For instance, if we use a larger memory bound of

𝑟 =5·𝑟0, we obtain very similar results: the cost here is reduced by

a 0.76× factor (geo-mean). However, in e.g. the edge case when we

select the minimal 𝑟 =𝑟0, the cost reduction is drastically smaller

(0.97×), with no improvement on 6 out of 15 instances. This is likely

Table 1: Concrete cost of synchronous MBSP schedules with
the two-stage baseline / our ILP method, on each computa-
tional DAG of the smallest dataset in [36].

Instance Base / ILP

bicgstab 197 / 181

k-means 158 / 106

pregel 206 / 152

spmv_N6 123 / 79

spmv_N7 120 / 77

spmv_N10 159 / 96

CG_N2_K2 283 / 267

CG_N3_K1 199 / 195

Instance Base / ILP

CG_N4_K1 229 / 208

exp_N4_K2 149 / 91

exp_N5_K3 185 / 144

exp_N6_K4 169 / 168

kNN_N4_K3 179 / 132

kNN_N5_K3 167 / 108

kNN_N6_K4 180 / 173

because an MBSP schedule with this 𝑟 is very restricted, leaving

notably less degree of freedom for the ILP to improve upon the

baseline.

If we increase the number of processors to 𝑃 = 8, we observe

a slightly worse improvement ratio of 0.82×: the ILPs are more

challenging to optimize in this case, since they contain almost

twice as many variables.

If we still consider synchronous scheduling model, but without

synchronization cost (𝐿 = 0), then the cost reduction slightly drops,

to a 0.85× factor. If we switch to the asynchronous cost model

instead, our methods only obtain a 0.91× geomean cost reduction

to the baselines. In general, our experience is that this asynchronous

ILP formulation is more challenging to optimize for the ILP solver,

likely due to the intricate dependencies between the non-binary

finishtime𝑝,𝑡 variables that express 𝛾 (𝜏𝑖).
It is also a natural idea to compare our ILP schedulers to other

two-stage baselines. As a stronger baseline, we can already for-

mulate and optimize the BSP scheduling problem as an separate

ILP in the first stage, similarly to [36]. We found that our method

can still obtain a geo-mean improvement of 0.88× over these more

sophisticated initial schedules. Since the first stage uses the same

ILP solver in this case, this again confirms the superiority of the

holistic method over the two-stage approach.

It is also interesting to consider a more application-oriented two-

stage baseline with well-known methods from practice. For this,

we first use the Cilk work-stealing scheduler to find an efficient

schedule, and then the ‘least recently used’ (LRU) cache eviction

rule for memory management. These generic heuristics may be

more representative baselines in many applications than the special-

ized heuristics above. When compared to this baseline, our MBSP

schedules amount to an even larger, 0.66× geomean cost reduction.

While we focus on multiprocessor scheduling, the ILPs also give

us a unique chance to analyze the single-processor case with 𝑃 =1.

This is essentially the red-blue pebble game of Hong and Kung [19]

with computation costs and node weights. The red-blue pebble

game has been studied extensively for decades, but surprisingly,

we are not aware of any experimental study of pebbling algorithms.

We can simply use a DFS as our first-stage scheduler here, and

we already obtain a very strong baseline for red-blue pebbling: we

8

https://github.com/Algebraic-Programming/OneStopParallel

Multiprocessor Scheduling with Memory Constraints: Fundamental Properties and Finding Optimal Solutions

base r= 5⋅r0 P= 8 L= 0 async

0.6

0.7

0.8

0.9

1.0

Co
st

 re
du

ct
io

n
ra

tio

Figure 4: Illustration of the distribution of cost reduction factors for the smallest dataset of [36], for several different choices of
parameters. The base case has 𝑃 = 4, 𝑟 = 3·𝑟0 and 𝐿 = 10.

found that the ILPs could only improve on this baseline in 2 out of

the 15 instances. This suggests that the strength of our scheduling

approach is indeed in the fact that it can consider the multiprocessor

scheduling and the memory management problems holistically.

Another interesting option is to prohibit re-computation in our

schedules, i.e. to require that each node is only computed on one

processor and only once. This simplifying assumption is used in

many scheduling and pebbling models. In general, re-computations

can reduce the total cost by allowing to save I/O steps; their effect

has been studied theoretically before [31], but not experimentally,

to our knowledge. Our framework offers a convenient opportunity

to study this question, since we can easily prohibit re-computation

in our ILPs with some further constraints. If we do this, our experi-

ments show up to a 1.4× cost increase on some specific instances

(compared to the default ILP that allows recomputation). This indi-

cates that re-computation steps are indeed actively used in efficient

schedules.

Finally, we also briefly consider how the ILP-based scheduling

approach scales to larger DAGs. We consider the larger dataset

of 10 instances with 264–464 nodes, using 𝑟 = 5 ·𝑟0. Recall that
these DAGs generate much larger ILP formulations, and hence we

apply the divide-and-conquer algorithm on this dataset. While this

method excels at optimizing each subproblem, it does not optimize

for a global optimum, and hence it may fall behind the baseline.

Indeed, we found that our method finds notably better schedules

on specific kinds of graphs, e.g. the coarse-grained or the SpMV

computations (see [36]), achieving a 0.66× and 0.75× geomean cost

reduction, respectively. However, on the remaining DAGs which

do not allow for so good partitionings into loosely connected parts,

the schedules returned are actually a 1.13× geomean factor worse

than the baseline. The concrete costs for each instance are listed

in Table 2. We find it a promising direction for future work to

better understand this effect, and to identify specific applications

or families of DAGs where our divide-and-conquer approach can

reliably outperform the baseline.

Table 2: Cost of MBSP schedules with the baseline / our
divide-and-conquer ILP, on some larger computational DAGs
from [36]. For the instances on the left side, our method can
indeed find a better schedule; for those on the right, it could
not outperform the two-stage baseline.

Instance Base / ILP

simple_pagerank 1017 / 779

snni_graphchall. 1531 / 912

spmv_N25 425 / 314

spmv_N35 685 / 518

CG_N5_K4 847 / 750

Instance Base / ILP

CG_N7_K2 701 / 701

exp_N10_K8 573 / 727

exp_N15_K4 512 / 660

kNN_N10_K8 594 / 682

kNN_N15_K4 517 / 655

8 Conclusion
Altogether, our work indicates that multiprocessor scheduling with

memory constraints is a rather delicate problem on general DAGs.

We have shown that a two-stage approach can be highly suboptimal

in theory, and that an ILP-based holistic method can indeed return

notably better schedules in many cases.

Naturally, one significant drawback of this ILP method is that it

takes significantly more time to find a schedule than lightweight

scheduling heuristics. As such, it is not directly applicable in many

domains where the schedule computation time is also a critical

factor. However, there are also many cases where the same static

computation is executedmany times (possiblywith different inputs),

e.g. for an important low-level operator in a neural network. In

these settings, even a small improvement in the scheduling cost can

have a significant impact on the long term. Furthermore, even in

domains where our ILP-based method is not directly applicable, the

algorithm can give valuable insights into how to design efficient

schedules, or how far a scheduling heuristic is from the optimal

solution.

9

Pál András Papp, Toni Böhnlein, and Albert-Jan N. Yzelman

References
[1] Rob H Bisseling. 2020. Parallel Scientific Computation: A Structured Approach

Using BSP. Oxford University Press, USA.

[2] Jeremiah Blocki, Ling Ren, and Samson Zhou. 2018. Bandwidth-hard functions:

Reductions and lower bounds. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. 1820–1836.

[3] Robert D Blumofe and Charles E Leiserson. 1999. Scheduling multithreaded

computations by work stealing. Journal of the ACM (JACM) 46, 5 (1999), 720–748.
[4] Toni Böhnlein, Pál András Papp, and Albert-Jan N. Yzelman. 2025. Red-Blue

Pebbling with Multiple Processors: Time, Communication and Memory Trade-

Offs. In International Colloquium on Structural Information and Communication
Complexity (SIROCCO). Springer, 109–126.

[5] Timothy Carpenter, Fabrice Rastello, P Sadayappan, and Anastasios Sidiropoulos.

2016. Brief announcement: Approximating the I/O complexity of one-shot

red-blue pebbling. In Proceedings of the 28th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). 161–163.

[6] Lin Chen, Klaus Jansen, and Guochuan Zhang. 2014. On the optimality of

approximation schemes for the classical scheduling problem. In Proceedings of
the 25th annual ACM-SIAM symposium on Discrete algorithms (SODA). SIAM,

657–668.

[7] Edward G Coffman and Ronald L Graham. 1972. Optimal scheduling for two-

processor systems. Acta informatica 1, 3 (1972), 200–213.
[8] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,

Eunice Santos, Ramesh Subramonian, and Thorsten Von Eicken. 1993. LogP:

Towards a realistic model of parallel computation. In Proceedings of the fourth
ACM SIGPLAN symposium on Principles and practice of parallel programming
(PPoPP). 1–12.

[9] Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Jakub Tarnawski, and Yihao

Zhang. 2020. Scheduling with communication delays via LP hierarchies and

clustering. In 61st Annual Symposium on Foundations of Computer Science (FOCS).
IEEE, 822–833.

[10] Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Jakub Tarnawski, and Yihao

Zhang. 2021. Scheduling with communication delays via LP hierarchies and

clustering II: weighted completion times on related machines. In ACM-SIAM
Symposium on Discrete Algorithms (SODA). SIAM, 2958–2977.

[11] Erik D Demaine and Quanquan C Liu. 2018. Red-blue pebble game: Complexity of

computing the trade-off between cache size and memory transfers. In Proceedings
of the 30th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
195–204.

[12] Venmugil Elango, Fabrice Rastello, Louis-Noël Pouchet, Jagannathan Ramanujam,

and Ponnuswamy Sadayappan. 2014. On characterizing the data movement

complexity of computational DAGs for parallel execution. In Proceedings of the
26th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
296–306.

[13] Lionel Eyraud-Dubois, Loris Marchal, Oliver Sinnen, and Frédéric Vivien. 2015.

Parallel scheduling of task trees with limited memory. ACM Transactions on
Parallel Computing (TOPC) 2, 2 (2015), 1–37.

[14] Shashwat Garg. 2018. Quasi-PTAS for Scheduling with Precedences using LP

Hierarchies. In 45th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[15] Dongdong Ge, Qi Huangfu, Zizhuo Wang, Jian Wu, and Yinyu Ye. 2023. Cardinal

Optimizer (COPT) user guide. https://guide.coap.online/copt/en-doc.

[16] Niels Gleinig and Torsten Hoefler. 2022. The red-blue pebble game on trees and

dags with large input. In International Colloquium on Structural Information and
Communication Complexity. Springer, 135–153.

[17] Claire Hanen and Alix Munier. 1995. An approximation algorithm for sched-

uling dependent tasks on m processors with small communication delays. In

Proceedings 1995 INRIA/IEEE Symposium on Emerging Technologies and Factory
Automation (ETFA), Vol. 1. IEEE, 167–189.

[18] Jonathan MD Hill, Bill McColl, Dan C Stefanescu, Mark W Goudreau, Kevin

Lang, Satish B Rao, Torsten Suel, Thanasis Tsantilas, and Rob H Bisseling. 1998.

BSPlib: The BSP programming library. Parallel Comput. 24, 14 (1998), 1947–1980.
[19] Jia-Wei Hong and Hsiang-Tsung Kung. 1981. I/O complexity: The red-blue pebble

game. In Proceedings of the 13th ACM Symposium on Theory of Computing (STOC).
326–333.

[20] Saachi Jain and Matei Zaharia. 2020. Spectral Lower Bounds on the I/O Com-

plexity of Computation Graphs. In Proceedings of the 32nd ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). 329–338.

[21] Engelina L Jenneskens and Rob H Bisseling. 2022. Exact k-way sparse matrix par-

titioning. In 2022 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 754–763.

[22] Enver Kayaaslan, Thomas Lambert, Loris Marchal, and Bora Uçar. 2018. Schedul-

ing series-parallel task graphs to minimize peak memory. Theoretical Computer
Science 707 (2018), 1–23.

[23] Janardhan Kulkarni, Shi Li, Jakub Tarnawski, and Minwei Ye. 2020. Hierarchy-

based algorithms for minimizing makespan under precedence and communica-

tion constraints. In Proceedings of the 14th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA). SIAM, 2770–2789.

[24] Grzegorz Kwasniewski, Tal Ben-Nun, Lukas Gianinazzi, Alexandru Calotoiu,

Timo Schneider, Alexandros Nikolaos Ziogas, Maciej Besta, and Torsten Hoe-

fler. 2021. Pebbles, graphs, and a pinch of combinatorics: Towards tight I/O

lower bounds for statically analyzable programs. In Proceedings of the 33rd ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA). 328–339.

[25] Grzegorz Kwasniewski, Marko Kabić, Maciej Besta, Joost VandeVondele, Raffaele

Solcà, and Torsten Hoefler. 2019. Red-blue pebbling revisited: near optimal par-

allel matrix-matrix multiplication. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. 1–22.

[26] Jan Karel Lenstra, AHG Rinnooy Kan, and Peter Brucker. 1977. Complexity of

machine scheduling problems. In Annals of discrete mathematics. Vol. 1. Elsevier,
343–362.

[27] Renaud Lepere and Christophe Rapine. 2002. An Asymptotic {𝑂 } (𝑙𝑛𝜌/𝑙𝑛𝑙𝑛𝜌)-
Approximation Algorithm for the Scheduling Problem with Duplication on Large

Communication Delay Graphs. In Annual Symposium on Theoretical Aspects of
Computer Science (STACS). Springer, 154–165.

[28] Elaine Levey and Thomas Rothvoss. 2016. A (1+ epsilon)-approximation for

makespan scheduling with precedence constraints using LP hierarchies. In Pro-
ceedings of the 48th annual ACM Symposium on Theory of Computing (STOC).
168–177.

[29] Shi Li. 2021. Towards PTAS for Precedence Constrained Scheduling via Com-

binatorial Algorithms. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 2991–3010.

[30] Quanquan C Liu, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R Wang.

2022. Scheduling with Communication Delay in Near-Linear Time. In 39th
International Symposium on Theoretical Aspects of Computer Science (STACS).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[31] Biswaroop Maiti, Rajmohan Rajaraman, David Stalfa, Zoya Svitkina, and Aravin-

dan Vijayaraghavan. 2020. Scheduling precedence-constrained jobs on related

machines with communication delay. In 61st Annual Symposium on Foundations
of Computer Science (FOCS). IEEE, 834–845.

[32] Bill McColl. 2021. Mathematics, Models and Architectures. Cambridge University

Press, 6–53.

[33] WF McColl and A Tiskin. 1999. Memory-efficient matrix computations in the

BSP model. Algorithmica 24, 3-4 (1999), 287–297.
[34] M. Yusuf Özkaya, Anne Benoit, Bora Uçar, Julien Herrmann, and Ümit V.

Çatalyürek. 2019. A Scalable Clustering-Based Task Scheduler for Homoge-

neous Processors Using DAG Partitioning. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 155–165.

[35] Christos Papadimitriou and Mihalis Yannakakis. 1988. Towards an architecture-

independent analysis of parallel algorithms. In Proceedings of the 20th annual
ACM symposium on Theory of computing (STOC). 510–513.

[36] Pál András Papp, Georg Anegg, Aikaterini Karanasiou, and Albert-Jan N Yzelman.

2024. Efficient Multi-Processor Scheduling in Increasingly Realistic Models.

In Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). 463–474.

[37] Pál András Papp, Georg Anegg, and Albert-Jan N Yzelman. 2023. Partitioning

hypergraphs is hard: Models, inapproximability, and applications. In Proceedings
of the 35th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
415–425.

[38] Pál András Papp, Georg Anegg, and Albert-Jan N Yzelman. 2025. DAG Scheduling

in the BSP Model. In International Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM). Springer, 238–253.

[39] Pál András Papp and Roger Wattenhofer. 2020. On the hardness of red-blue

pebble games. In Proceedings of the 32nd ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). 419–429.

[40] Ravi Sethi. 1976. Scheduling graphs on two processors. SIAM J. Comput. 5, 1
(1976), 73–82.

[41] Ola Svensson. 2010. Conditional hardness of precedence constrained scheduling

on identical machines. In Proceedings of the 42nd ACM Symposium on Theory of
Computing (STOC). 745–754.

[42] Leslie G Valiant. 1990. A bridging model for parallel computation. Commun.
ACM 33, 8 (1990), 103–111.

[43] Leslie G Valiant. 2008. A bridging model for multi-core computing. In European
Symposium on Algorithms (ESA). Springer, 13–28.

[44] Leslie G Valiant. 2011. A bridging model for multi-core computing. J. Comput.
System Sci. 77, 1 (2011), 154–166.

[45] Bart Veltman, BJ Lageweg, and Jan Karel Lenstra. 1990. Multiprocessor scheduling

with communication delays. Parallel computing 16, 2-3 (1990), 173–182.

[46] AN Yzelman, Rob H Bisseling, Dirk Roose, and Karl Meerbergen. 2014. Multi-

coreBSP for C: a high-performance library for shared-memory parallel program-

ming. International Journal of Parallel Programming 42, 4 (2014), 619–642.

10

Multiprocessor Scheduling with Memory Constraints: Fundamental Properties and Finding Optimal Solutions

A Model definition details
We begin with some technical details omitted from the MBSP prob-

lem definition.

Throughout the pebbling, we formally define the current state

of a processor 𝑝 ∈ [𝑃] as a tuple (𝑅𝑝 , 𝐵𝑝), where 𝑅𝑝 is the set of

nodes that currently have a red pebble of processor 𝑝 on them,

and 𝐵𝑝 is the set of nodes that have a blue pebble according to the

current knowledge of processor 𝑝 (also considering the last syn-

chronization point). Note that this 𝐵𝑝 is a rather artificial concept,

since the processors actually share a common slow memory, but it

allows to define the pebbling sequences on the specific processors

independently from each other.

For any node 𝑣 ∈ 𝑉 , let Par(𝑣) and Chld(𝑣) denote the set of

parents and children of 𝑣 , respectively. A state (𝑅𝑝 , 𝐵𝑝) is initial if
only the source nodes of 𝐺 have blue pebbles, i.e., 𝐵𝑝 (0) = {𝑣 ∈
𝐺 | Par(𝑣) = ∅}, and 𝑅𝑝 (0) = ∅. A state (𝑅𝑝 , 𝐵𝑝) is terminal if all

the sink nodes have a blue pebble, i.e., {𝑣 ∈ 𝐺 | Chld(𝑣) = ∅} ⊆ 𝐵𝑝 .

Given a current state of the pebbling (𝑅𝑝 (𝑡), 𝐵𝑝 (𝑡)) on processor 𝑝 ,

for a specific node 𝑣 ∈ 𝑉 , the transition rules are as follows:

(1) LOAD𝑝,𝑣 : place a red pebble of processor 𝑝 on node 𝑣 if 𝑣

already has a blue pebble. I.e., if 𝑣 ∈ 𝐵𝑝 (𝑡), then set 𝑅𝑝 (𝑡 +
1) = 𝑅𝑝 (𝑡) ∪ {𝑣} and 𝐵𝑝 (𝑡 + 1) = 𝐵𝑝 (𝑡).

(2) SAVE𝑝,𝑣 : place a blue pebble on node 𝑣 if 𝑣 already has a red

pebble of processor 𝑝 . I.e., if 𝑣 ∈ 𝑅𝑝 (𝑡), then set 𝑅𝑝 (𝑡 + 1) =
𝑅𝑝 (𝑡) and 𝐵𝑝 (𝑡 + 1) = 𝐵𝑝 (𝑡) ∪ {𝑣}.

(3) COMPUTE𝑝,𝑣 : if all the parents of a non-source node 𝑣

have a red pebble of processor 𝑝 , then place a red pebble

of processor 𝑝 on 𝑣 . I.e, if Par(𝑣) ⊆ 𝑅𝑝 (𝑡) with Par(𝑣) ≠ ∅,
then set 𝑅𝑝 (𝑡 + 1) = 𝑅𝑝 (𝑡) ∪ {𝑣} and 𝐵𝑝 (𝑡 + 1) = 𝐵𝑝 (𝑡).

(4) DELETE𝑝,𝑣 : remove the red pebble of processor 𝑝 from

node 𝑣 . I.e., if 𝑣 ∈ 𝑅𝑝 (𝑡), then set 𝑅𝑝 (𝑡 + 1) = 𝑅𝑝 (𝑡) \ {𝑣}
and 𝐵𝑝 (𝑡 + 1) = 𝐵𝑝 (𝑡).

A pebbling sequence on processor 𝑝 is a sequence of states

((𝑅𝑝 (0), 𝐵𝑝 (0)), (𝑅𝑝 (1), 𝐵𝑝 (1)), ..., (𝑅𝑝 (𝑇), 𝐵𝑝 (𝑇))) ,

or a sequence of transition rules Ψ𝑝 = (𝜏1, ..., 𝜏𝑇) from the list

above, where for all 𝑡 ∈ [𝑇], the prerequisites of transition rule 𝜏𝑖
are fulfilled in (𝑅𝑝 (𝑡 − 1), 𝐵𝑝 (𝑡 − 1)), and we obtain (𝑅𝑝 (𝑡), 𝐵𝑝 (𝑡))
from (𝑅𝑝 (𝑡 − 1), 𝐵𝑝 (𝑡 − 1)) by applying rule 𝜏𝑖 . We also require

that the sequence is valid, i.e. it always fulfills the memory bound:

for all 𝑡 ∈ [𝑇] ∪ {0}, we have ∑𝑣∈𝑅𝑝 (𝑡) 𝜇 (𝑣) ≤ 𝑟 . The cost of the

sequence is

𝑐𝑜𝑠𝑡 (Ψ𝑝) =
∑︁

𝑡 ∈[𝑇]
𝑐𝑜𝑠𝑡 (𝜏𝑡) .

Let the starting/final state of the red/blue pebbles be denoted

by 𝑅𝑠𝑡𝑎𝑟𝑡 (Ψ𝑝) = 𝑅𝑝 (0), 𝐵𝑠𝑡𝑎𝑟𝑡 (Ψ𝑝) = 𝐵𝑝 (0), 𝑅𝑒𝑛𝑑 (Ψ𝑝) = 𝑅𝑝 (𝑇),
𝐵𝑒𝑛𝑑 (Ψ𝑝) = 𝐵𝑝 (𝑇).

Recall from before that a superstep Ψ𝑝 on processor 𝑝 is a 4-

tuple (Ψ𝑝,𝑐𝑜𝑚𝑝 ,Ψ𝑝,𝑠𝑎𝑣𝑒 ,Ψ𝑝,𝑑𝑒𝑙 ,Ψ𝑝,𝑙𝑜𝑎𝑑). Previously we left out the

dependence on 𝑝 from the notation for simplicity.

A superstep Ψ is then a tuple Ψ = (Ψ1, ...,Ψ𝑃), where Ψ𝑝 is a

superstep on processor 𝑝 for 𝑝 ∈ [𝑃], and for all 𝑝 ∈ [𝑃], we have
• 𝑅𝑠𝑡𝑎𝑟𝑡 (Ψ𝑝,𝑠𝑎𝑣𝑒) = 𝑅𝑒𝑛𝑑 (Ψ𝑝,𝑐𝑜𝑚𝑝),
• 𝑅𝑠𝑡𝑎𝑟𝑡 (Ψ𝑝,𝑑𝑒𝑙) = 𝑅𝑒𝑛𝑑 (Ψ𝑝,𝑠𝑎𝑣𝑒),

• 𝑅𝑠𝑡𝑎𝑟𝑡 (Ψ𝑝,𝑙𝑜𝑎𝑑) = 𝑅𝑒𝑛𝑑 (Ψ𝑝,𝑑𝑒𝑙),
• 𝐵𝑠𝑡𝑎𝑟𝑡 (Ψ𝑝,𝑠𝑎𝑣𝑒) = 𝐵𝑒𝑛𝑑 (Ψ𝑝,𝑐𝑜𝑚𝑝),
• 𝐵𝑠𝑡𝑎𝑟𝑡 (Ψ𝑝,𝑑𝑒𝑙) =

⋃
𝑝∈[𝑃] 𝐵𝑒𝑛𝑑 (Ψ𝑝,𝑠𝑎𝑣𝑒),

• 𝐵𝑠𝑡𝑎𝑟𝑡 (Ψ𝑝,𝑙𝑜𝑎𝑑) = 𝐵𝑒𝑛𝑑 (Ψ𝑝,𝑑𝑒𝑙).

AnMBSP schedule is a sequence of supersteps (Ψ(1) ,Ψ(2) , ...,Ψ(𝑚))
such that:

• for the superstep Ψ(1) = (Ψ(1)
1

, ...,Ψ
(1)
𝑃
), for any 𝑝 ∈ [𝑃],

the state(
𝑅𝑠𝑡𝑎𝑟𝑡

(
Ψ
(1)
𝑝,𝑐𝑜𝑚𝑝

)
, 𝐵𝑠𝑡𝑎𝑟𝑡

(
Ψ
(1)
𝑝,𝑐𝑜𝑚𝑝

))
is an initial state;

• for any two consecutive supersteps Ψ = (Ψ1, ...,Ψ𝑃) and
Ψ′ = (Ψ′

1
, ...,Ψ′

𝑃
) in the sequence, for any 𝑝 ∈ [𝑃], we have

𝑅𝑠𝑡𝑎𝑟𝑡 (Ψ′𝑝,𝑐𝑜𝑚𝑝) = 𝑅𝑒𝑛𝑑 (Ψ𝑝,𝑙𝑜𝑎𝑑) ,
𝐵𝑠𝑡𝑎𝑟𝑡 (Ψ′𝑝,𝑐𝑜𝑚𝑝) = 𝐵𝑒𝑛𝑑 (Ψ𝑝,𝑙𝑜𝑎𝑑) ;

• for the superstep Ψ(𝑚) = (Ψ(𝑚)
1

, ...,Ψ
(𝑚)
𝑃
), for any 𝑝 ∈ [𝑃],

the state(
𝑅𝑒𝑛𝑑

(
Ψ
(𝑚)
𝑝,𝑙𝑜𝑎𝑑

)
, 𝐵𝑒𝑛𝑑

(
Ψ
(𝑚)
𝑝,𝑙𝑜𝑎𝑑

))
is a terminal state.

In the definition of the synchronous cost function, we again

omitted the dependence on processors for simplicity: for instance,

𝑐𝑜𝑠𝑡 (Ψ𝑐𝑜𝑚𝑝) should instead be 𝑐𝑜𝑠𝑡 (Ψ𝑝,𝑐𝑜𝑚𝑝).
We also note that in this synchronous cost function, one might

wonder if it is more natural to allow a processor to load values

while another one is saving, and hence define 𝑐𝑜𝑠𝑡 (Ψ) as

max

𝑝∈[𝑃]
𝑐𝑜𝑠𝑡 (Ψ𝑝,𝑐𝑜𝑚𝑝) + max

𝑝∈[𝑃]

(
𝑐𝑜𝑠𝑡 (Ψ𝑝,𝑠𝑎𝑣𝑒) + 𝑐𝑜𝑠𝑡 (Ψ𝑝,𝑙𝑜𝑎𝑑)

)
+ 𝐿

instead. However, such a model variant would require a more com-

plex definition for communication phases in order to ensure con-

sistency, i.e. that values are only loaded from slow memory after

they become available there. This model variant would also not be

a direct generalization of multiprocessor red-blue pebbling.

In the asynchronous cost function, we consider the entire se-

quence

Υ𝑝 := Ψ
(1)
𝑝,𝑐𝑜𝑚𝑝 ◦ Ψ

(1)
𝑝,𝑠𝑎𝑣𝑒 ◦ Ψ

(1)
𝑝,𝑑𝑒𝑙

◦ Ψ(1)
𝑝,𝑙𝑜𝑎𝑑

◦ . . .

. . . ◦ Ψ(𝑚)𝑝,𝑐𝑜𝑚𝑝 ◦ Ψ
(𝑚)
𝑝,𝑠𝑎𝑣𝑒 ◦ Ψ

(𝑚)
𝑝,𝑑𝑒𝑙

◦ Ψ(𝑚)
𝑝,𝑙𝑜𝑎𝑑

,

and define the finishing time function𝛾 on this sequence. Regarding

the auxiliary function Γ which shows when a node first becomes

available in slow memory, for any node 𝑣 ∈ 𝑉 , let 𝑗 be the smallest

superstep index such that ∃ 𝑝 ∈ [𝑃] so that there is a transition

SAVE𝑝,𝑣 in Ψ
(𝑗)
𝑝,𝑠𝑎𝑣𝑒 . Let us denote by𝑈𝑃 (𝑣) the set of all SAVE𝑝,𝑣

transitions 𝜏𝑖 in Ψ
(𝑗)
𝑝,𝑠𝑎𝑣𝑒 for some 𝑝 ∈ [𝑃], and then we define

Γ(𝑣) = min

𝜏∈𝑈𝑃 (𝑣)
𝛾 (𝜏) .

Note that if the schedule is valid, then 𝛾 (𝜏𝑖) is indeed well-defined,

since 𝑣 must already be saved to slow memory before (or in) the

superstep where it is loaded.

11

Pál András Papp, Toni Böhnlein, and Albert-Jan N. Yzelman

B Proof details
This section provides the proofs and proof details omitted from the

main part of the paper.

B.1 Proof details for Theorem 4.1
The main idea for the proof of Theorem 4.1 was already outlined in

the main part of the paper. We discuss some technical details here.

Our construction consists of two groups𝐻1,𝐻2 of𝑑 source nodes,

and two chains 𝑣1, ..., 𝑣𝑚 and 𝑢1, ..., 𝑢𝑚 , such that (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 and

(𝑢𝑖 , 𝑢𝑖+1) ∈ 𝐸 for all 𝑖 ∈ [𝑚 − 1]. If 𝑖 ∈ [𝑚] is an odd integer, then

there is also an edge to 𝑢𝑖 from all nodes of 𝐻1, and to 𝑣𝑖 from all

nodes of 𝐻2. If 𝑖 ∈ [𝑚] is an even integer, then there is also an

edge to 𝑢𝑖 from all nodes of 𝐻2, and to 𝑣𝑖 from all nodes of 𝐻1. We

will also use Ch(𝐻1) and Ch(𝐻2) to denote the children of 𝐻1 and

𝐻2, respectively. Assume that the node weights are uniform, i.e.

𝜔 (𝑣) = 1 and 𝜇 (𝑣) = 1 for all 𝑣 ∈𝑉 . Assume that the size of the

available cache is 𝑟 = 𝑑 + 2, we have 𝑃 = 2 processors, and 𝐿 = 0 in

the synchronous case. For our parameters, let 𝑔 = 𝑂 (1), and let us

set𝑚 > 2·𝑑 ·𝑔 + 𝑑 to cover several model variants. With 2 · (𝑑 +𝑚)
nodes in the DAG, we can still ensure 𝑑 = Θ(𝑛) and𝑚 = Θ(𝑛).

Note that there is a modeling question here on how we interpret

our MBSP problem in a BSP scheduling setting: in BSP (and other)

DAG scheduling problems, the sources of the DAG are also regular

nodes that need to be computed, whereas inMBSP, the source nodes

are not computed, but directly loaded from slow memory (as in red-

blue pebbling). However, this only plays a minor role in our example

construction. If the nodes in 𝐻1, 𝐻2 need to be computed, this adds

a compute cost between 𝑑 and 2𝑑 to any solution. Afterwards,

exchanging the values between the two processors has a cost of

𝑑 · 𝑔 in a direct communication model with ℎ-relations (as in e.g.

[38]). Alternatively, in a BSP variant where source nodes are still

uncomputed and loaded from slow memory, it takes a cost of 2 ·𝑑 ·𝑔
to load all the source nodes to both processors. As in BSP, we assume

that the sinks are simply computed but not saved or sent anywhere.

In any of these BSP variants, the optimal scheduling strategy is to

compute 𝑣1, ..., 𝑣𝑚 on one processor, and𝑢1, ..., 𝑢𝑚 on the other. This

has a compute cost of only𝑚 or𝑚+𝑑 , which is the minimal possible

compute cost in the respective BSP variant. The communication

cost is only 𝑑 · 𝑔 or 2 · 𝑑 · 𝑔, as discussed above. We show that

the BSP cost of any other schedule is larger than this reference

solution. Indeed, in both of the BSP variants, this is already the

minimal amount of communication cost that can be incurred if

both processors acquire all the source nodes, i.e. if both processors

compute at least one node from both Ch(𝐻1) and Ch(𝐻2).
As such, there are only a few possible BSP schedules with poten-

tially lower cost. If Ch(𝐻1) is computed entirely on one processor,

and Ch(𝐻2) on the other, then every chain node needs to be sent

between the processors, giving a communication cost of at least

(𝑚 − 1) · 𝑔; with 𝑑 < 𝑚 − 1, this is larger than the communica-

tion cost before. If both Ch(𝐻1) and Ch(𝐻2) are computed entirely

on the same processor, then the compute cost is at least 2𝑚; with

𝑚 > 2·𝑑 ·𝑔 + 𝑑 , this is also suboptimal in both BSP variants.

Finally, assume w.l.o.g. that Ch(𝐻1) is computed entirely on

processor 𝑝1, but Ch(𝐻2) is split between the two processors. We

consider the two BSP variants separately. In the variant with loaded

source nodes, loading all sources to 𝑝1 already incurs a communi-

cation cost of 2 ·𝑑 ·𝑔. In the variant with computed source nodes, if

there are 𝑥 ≥ 1 nodes of Ch(𝐻2) computed on 𝑝2, then all of these

nodes that are not sinks (so at least (𝑥 −1) nodes) need to be sent to
𝑝1 for computing their child. Besides this, making 𝐻2 available on

both processors also requires 𝑑 values to be sent, regardless of how

the computation of 𝐻2 is split between 𝑝1 and 𝑝2. This altogether

gives a communication cost of at least
𝑑+𝑥−1

2
· 𝑔 in the BSP model

with ℎ-relations. If we instead compute the entire DAG on 𝑝1, then

these communication steps are all saved, and compute costs are

increased by at most 2𝑑 + 𝑥 . For 𝑔 = 5 and 𝑑 large enough, we have

𝑑+𝑥−1
2
· 𝑔 > 2𝑑 + 𝑥 , so this indeed improves the solution. However,

the compute cost is now still larger by𝑚 + 𝑑 than in our reference

solution; with𝑚 > 2 · 𝑑 · 𝑔, this is suboptimal. This establishes that

the reference solution is indeed the optimal one for BSP.

Let us begin from this optimal BSP schedule and use 𝑟 = 𝑑 + 2;
this means that besides the current two nodes in the chain, the

cache can only contain either 𝐻1 or 𝐻2 at any point. As such, we

repeatedly need to load either 𝐻1 or 𝐻2 for each next chain node,

and hence the number of required I/O operations becomes 𝑑 ·𝑚 on

the chains.

Instead, the optimal MBSP schedule is to compute all children

of 𝐻1 on one processor and all children of 𝐻2 on the other. This

results in only 2 I/O operations for each chain node. As such, the

two-stage approach results in a compute cost of 𝑚 + 𝑂 (𝑑), and
a communication cost of (𝑑 · 𝑚 + 𝑂 (𝑑)) · 𝑔. The optimal MBSP

schedule has a compute cost of𝑚 + 𝑂 (𝑑), and a communication

cost of (2 ·𝑚 + 𝑂 (𝑑)) · 𝑔. With 𝑑 < 𝑚 and 𝑑 = Θ(𝑛), the ratio is

linear in 𝑛.

We note that if desired, the above proof can also be generalized

to more processors as long as 𝑃 ∈ 𝑂 (1). For any 𝑃 ≥ 3, we simply

add (𝑃 − 2) copies of the following component to our DAG: a group

of 𝑑 new source nodes, and a chain of length𝑚, with each source

node having an edge to each chain node. We select𝑚 > 𝑃 ·𝑑 ·𝑔 + 𝑑 .
We can then use almost the same arguments as above: the optimal

BSP and MBSP schedules will both use 2 processors for the original

part of the DAG as before, and a separate new processor for each

of the (𝑃 − 2) extra components. This results in the same cost for

both the two-stage approach and the MBSP optimum as before.

It is easy to see that the additional components do not affect the

optimal MBSP cost; the more technical part is to check that the

optimal schedule for BSP will also be the same as before. In the BSP

variant where source nodes are loaded, this is simpler. If there is a

processor that obtains all of 𝐻1∪𝐻2, then the communication cost

is already 2 · 𝑑 · 𝑔. If not, then every non-sink node in the original

chains will be sent to some other processor, resulting in 2 · (𝑚 − 1)
values sent, and a communication cost of at least

2· (𝑚−1)
𝑃

· 𝑔. For
𝑚 > 𝑃 · 𝑑 + 1, this is already larger than 2 · 𝑑 · 𝑔.

On the other hand, consider the variant where source nodes

are also computed. If there are at least two processors that obtain

all of the values 𝐻1∪𝐻2, then this incurs a communication cost

of at least 𝑑 · 𝑔, since one of them must receive at least 𝑑 values

from 𝐻1∪𝐻2. If no processor obtains all of 𝐻1∪𝐻2, we again get

2 · (𝑚 − 1) communicated values, and a cost of at least
2· (𝑚−1)

𝑃
.

Finally, assume there is exactly one processor 𝑝1 that obtains𝐻1∪𝐻2.

If 𝑝1 computes both original chains, we again have a compute cost

12

Multiprocessor Scheduling with Memory Constraints: Fundamental Properties and Finding Optimal Solutions

of at least 2·𝑚. If there are 𝑥 ≥ 1 nodes in the original two chains

not computed by 𝑝 , then for each such node (apart from the sinks),

its child is on a different processor, resulting in at least (𝑥 − 2) sent
values. Besides this, at least 𝑑 values from 𝐻1∪𝐻2 must be sent

to another processor than where it was computed, summing up to

a communication cost of at least
𝑑+𝑥−2

𝑃
· 𝑔. Instead computing all

of the original DAG on 𝑝 increases the compute cost by at most

2𝑑 + 𝑥 , which is smaller for e.g. for 𝑔 = 3 ·𝑃 and 𝑑 large enough,

which is still a constant choice of 𝑔. However, this solution is still

suboptimal since its compute cost is larger than 2 ·𝑚.

B.2 Proofs of Lemmas 5.1 and 5.2
We continue with the proofs of NP-hardness for the memory man-

agement subproblem. Recall that we consider a setting here where

the compute steps in all compute phases Ψ𝑐𝑜𝑚𝑝 in our MBSP sched-

ule are already fixed for every processor and superstep, but we are

free to add any delete operations in the compute phases, and any

save, delete and load operations in the corresponding parts of the

communication phases. We also implicitly assume that the compute

steps are provided such that there exists at least one valid schedule.

We assume that our goal is to minimize the I/O cost, i.e. the total

cost of the Ψ𝑠𝑎𝑣𝑒 and Ψ𝑙𝑜𝑎𝑑 phases is the synchronous setting with

𝐿 = 0. For convenience, let us first consider a simpler case where

we only need to minimize the total cost over the Ψ𝑙𝑜𝑎𝑑 phases.

Proof of Lemma 5.1. We provide a reduction from the number

partitioning problem: given integers 𝐴 = {𝑎1, ..., 𝑎𝑚} with sum

𝛼 , we need to find a subset 𝐴0 ⊆ 𝐴 that sums up to
𝛼
2
. We can

reduce this setting to a memory management problem with 𝑟 =

𝛼 , and separate source nodes 𝑣1, ..., 𝑣𝑚, 𝑣 ′ with memory weights

𝑎1, ..., 𝑎𝑚, 𝛼
2
, respectively. In particular, we ensure that first the

nodes 𝑣1, ..., 𝑣𝑚 are needed in cache for a computation; we can

simply ensure this with a compute step for node 𝑢1 that has all of

𝑣1, ..., 𝑣𝑚 as parents. Next, 𝑣 ′ is needed in cache; for this we compute

another node 𝑢2 (in a separate, second compute phase) that has 𝑣 ′

as its single parent. Finally, let 𝑣1, ..., 𝑣𝑚 be again needed in cache

in a third compute phase, due to computing a node 𝑢3 that has all

of 𝑣1, ..., 𝑣𝑚 as parents. Let the memory weights of 𝑢1, 𝑢2, 𝑢3 be 0

(or negligibly small).

If there is a subset 𝐴0 of sum
𝛼
2
, then we can leave this subset of

nodes in cache after the computation of 𝑢1 while we load 𝑣 ′. We

then only have to load the remaining nodes from 𝑣1, ..., 𝑣𝑚 (of total

weight
𝛼
2
) back into cache for 𝑢3; this gives a total loading cost of

𝛼 + 𝛼
2
+ 𝛼

2
= 2𝛼 . If such a subset does not exist, then the subset

of {𝑣1, ..., 𝑣𝑛} that remains in cache when computing 𝑢2 has size

strictly less than
𝛼
2
, so the loading cost for the third computation is

more than
𝛼
2
. This results in a total cost of more than 2𝛼 . □

Proof of Lemma 5.2. Similarly to a proof in [38], we consider

a reduction from 3-partition: given integers 𝐴 = {𝑎1, ..., 𝑎3𝑚} with
sum 𝛼 ·𝑚, we need to partition 𝐴 into𝑚 disjoint subsets of sum

𝛼 each. Let 𝑟 = ∞, and consider nodes 𝑣1, ..., 𝑣3𝑚 with memory

weights 𝑎1, ..., 𝑎3𝑚 , respectively, which are all parents of a specific

node𝑢 that is computed on processor 1 in superstep (𝑚+1). As such,
the nodes 𝑣1, ..., 𝑣3𝑚 all need to be loaded into the cache of processor

1 sometime during the first𝑚 loading phases Ψ𝑙𝑜𝑎𝑑 . Furthermore,

assume that processor 2 needs to load a separate value of weight

exactly 𝛼 in each of the communication phases 1, ...,𝑚.

This means that in the first𝑚 communication phases, we any-

way have a loading cost of 𝛼 due to processor 2, summing up to

𝛼 ·𝑚. In order to not increase the loading costs in any of these

communication phases, we need to load values of total weight at

most 𝛼 to processor 1 in each phase. In this case, a loading cost of

𝛼 ·𝑚 can be achieved if and only if 𝐴 can be partitioned into 𝑚

subsets of sum 𝛼 each, which completes the reduction.

It only remains to present a situation where processor 2 needs to

load a separate node of weight 𝛼 in each communication phase 1,

...,𝑚. This can be achieved by setting 𝑟 = 𝛼 ·𝑚, adding a node𝑤 of

weight 𝛼 · (𝑚 − 1) which is computed on processor 1 in superstep

1, and for each compute phase 𝑖 ∈ {2, ...,𝑚 + 1}, creating a separate
node𝑢𝑖 that has two parents:𝑤 , and a distinct source node of weight

𝛼 . This implies that 𝑤 has to be kept in the cache of processor 2

through the whole schedule, hence processor 1 can only load one

new source node into cache in each communication phase, and has

to delete it after using it as an input in the subsequent computation.

Note that we again assume that the memory weight of node 𝑢 and

all the nodes 𝑢𝑖 are 0. □

Note that the above proofs only require minimal modification for

the case when the I/O costs of the Ψ𝑠𝑎𝑣𝑒 phases are also considered.
In particular, in the reductions, only the sink nodes need to be ever

saved into slowmemory, so the saving costs are identical to the sum

of their weights. Since the weights of the sink nodes are 0, saving

them does not affect the total cost, and hence the same proofs apply

for the total I/O cost.

B.3 Proofs of Lemmas 5.3 and 5.4
We now analyze how different the synchronous and asynchronous

optimal solutions can be from each other. We first begin with the

case when we optimize for asynchronous cost, and show that this

can be rather suboptimal in terms of synchronous cost.

Proof of Lemma 5.3. Consider 𝑃 processors for some even inte-

ger 𝑃 , 𝑟 = ∞, and 𝑔 = 0 (or very small). For simplicity, let 𝑃 ′ := 𝑃/2.
For all 𝑖 ∈ [𝑃 ′], we create the following nodes in our graph:𝑢𝑖,1, 𝑣𝑖,1,
𝑢𝑖,2, 𝑣𝑖,2, ..., 𝑢𝑖,𝑃 ′ , 𝑣𝑖,𝑃 ′ , such that for all 𝑗 ∈ [𝑃 ′ − 1], there is an edge

from both𝑢𝑖, 𝑗 and 𝑣𝑖, 𝑗 to both𝑢𝑖, 𝑗+1 and 𝑣𝑖, 𝑗+1. For compute weights,

we select some large integer 𝑍 , and we set 𝜔 (𝑢𝑖, 𝑗) = 𝜔 (𝑣𝑖, 𝑗) = 𝑍 if

𝑖 = 𝑗 , and we set 𝜔 (𝑢𝑖, 𝑗) = 𝜔 (𝑣𝑖, 𝑗) = 1 if 𝑖 ≠ 𝑗 .

Finally, we add a source node 𝑠 , and draw an edge from 𝑠 to all

𝑢𝑖,1, 𝑣𝑖,1. This 𝑠 can be ignored in the rest of the analysis; it is loaded

in the beginning to all processors at no cost. It only ensures that no

other nodes are sources, and hence they all need to be computed.

The optimum schedule according to an asynchronous cost func-

tion is simple: we assign 𝑢𝑖, 𝑗 to processor 𝑖 and superstep 𝑗 , and

assign 𝑣𝑖, 𝑗 to processor 𝑃
′ + 𝑖 and superstep 𝑗 . This provides a valid

solution, and since all processor pairs have 𝑃 ′ − 1 supersteps of

compute weight 1 and a single superstep of compute weight 𝑍 ,

according to the asynchronous cost function, the cost is 𝑍 + 𝑃 ′ − 1.
However, according to a synchronous cost function, all super-

steps contain a node of compute weight 𝑍 , and hence even with

𝐿 = 0, the total cost is 𝑃 ′ ·𝑍 . In contrast to this, assume we keep the

assignments to processors the same, but change the assignment to

13

Pál András Papp, Toni Böhnlein, and Albert-Jan N. Yzelman

supersteps: we move all the nodes of cost 𝑍 into the same superstep,

and the remaining nodes into the supersteps before and after. That

is, for all 𝑖 ∈ [𝑃 ′] we place both𝑢𝑖, 𝑗 and𝑢𝑖, 𝑗 into superstep 𝑃 ′ + 𝑗 −𝑖 .
This creates one superstep of cost𝑍 , and 2𝑃 ′−2 supersteps of cost 1.
As such, the cost ratio between the two solutions is

𝑃 ′ ·𝑍
𝑍+2𝑃 ′−1 , which

approaches 𝑃 ′ = 𝑃
2
as we increase 𝑍 while keeping 𝑃 fixed. □

Proof of Lemma 5.4. Let 𝑃 = 5, 𝑟 = ∞, and 𝑔 = 0 (or very

small). Consider nodes 𝑢1, 𝑢2 that both have edges to nodes 𝑢3 and

𝑢4. Let us set 𝜔 (𝑢1) = 𝜔 (𝑢2) = 𝑍 − 1, and 𝜔 (𝑢3) = 𝜔 (𝑢4) = 2 · 𝑍
for some large integer 𝑍 . We add further nodes 𝑣1, 𝑣2, 𝑣3, 𝑣4, with

𝑣1 having an edge to all of 𝑣2, 𝑣3 and 𝑣4. We set 𝜔 (𝑣1) = 2 · 𝑍 and

𝜔 (𝑣2) = 𝜔 (𝑣3) = 𝜔 (𝑣4) = 𝑍 − 1. Finally, we add another isolated

node𝑤 with 𝜔 (𝑤) = 𝑍 − 1. We again add an artificial source 𝑠 with

edges to 𝑢1, 𝑢2, 𝑣1 and𝑤 .

In this DAG, the best schedule will always assign 𝑢1, 𝑢2 to some

processors in the first superstep, and 𝑢3 and 𝑢4 to some processors

in the second superstep. As for the rest of the nodes, we can assign

𝑣1 and𝑤 to the first superstep, and 𝑣2, 𝑣3, 𝑣4 to the second superstep

on separate processors; however, this means that there is a node of

compute cost 2 · 𝑍 in both supersteps, so the total cost is 4 · 𝑍 . On
the other hand, we can just assign𝑤 to the first superstep, 𝑣1 to the

second superstep, and 𝑣2, 𝑣3, 𝑣4 to the third supersteps on separate

processors; then the total cost is (𝑍 − 1) + 2 ·𝑍 + (𝑍 − 1) = 4 ·𝑍 − 2.
This latter cost is smaller, so this is the optimum cost. In particular,

one of the optimal solutions is where we assign 𝑤 and 𝑣1 to the

same processor 𝑝 in supersteps 1 and 2, respectively.

In an asynchronous setting, the solution above still has a cost

4 · 𝑍 − 2, since this is the total computation cost on processor 𝑝 .

In contrast, the former solution discussed above (𝑤 and 𝑣1 both

in the first superstep in different processors) only has a cost of

2 · 𝑍 + (𝑍 − 1) = 3 · 𝑍 − 1. The factor of difference between the two

solutions is then
4·𝑍−2
3·𝑍−1 , which approaches

4

3
if we increase 𝑍 . □

B.4 Proof of Lemma 6.1
Finally, we prove that even when the optimum to the ILP problem

with a specific time limit 𝑇 has multiple empty steps, the solution

can still be suboptimal.

Proof of Lemma 6.1. Consider the simplest case of 𝑃 =1 proces-

sor with all weights being uniformly 1, i.e. single-processor red-blue

pebbling with computation costs; our proof already applies to this

case. We will assume the base ILP representation that does not

apply step merging; otherwise, the corresponding costs and the

analysis need to be slightly adjusted.

Consider the following simple modification of the zipper gadget

used in [4, 39]. We take two chains (𝑢1, ..., 𝑢𝑑) and (𝑢′1, ..., 𝑢
′
𝑑
) of

length 𝑑 each. We then add a chain (𝑣0, 𝑣1, ..., 𝑣𝑚) of length (𝑚 + 1).
In all three chains, subsequent pairs of nodes are connected by a

directed edge. Node 𝑣0 has an edge from both 𝑢𝑑 and 𝑢′
𝑑
. For all

𝑖 ∈ [𝑚], node 𝑣𝑖 has an edge from 𝑢𝑑 if 𝑖 is an odd number, and

from 𝑢′
𝑑
if 𝑖 is an even number. Finally, we add a single source node

𝑤 that has an edge to all other nodes, and consider 𝑟 = 4. Note that

any reasonable schedule always keeps a red pebble on𝑤 , and hence

the problem is equivalent to scheduling the rest of the DAG with

3 red pebbles, with the modification that nodes 𝑢1 and 𝑢
′
1
can be

recomputed without I/O steps at any point.

The shortest possible pebbling sequence in this DAG first loads

𝑤 , then computes𝑢1, ..., 𝑢𝑑 in order (deleting the red pebble from all

nodes but 𝑢𝑑), computes 𝑢′
1
, ..., 𝑢′

𝑑
in order (deleting the red pebble

from all nodes but 𝑢′
𝑑
), then saves both 𝑢𝑑 and 𝑢′

𝑑
to slow memory,

and computes 𝑣0. We can then compute 𝑣1, but for this the red

pebble from 𝑢′
𝑑
needs to be deleted before. From here, for each 𝑣𝑖

with 𝑖 ≥ 2, we need to load an input value from slow memory (𝑢𝑑
if 𝑖 is odd, 𝑢′

𝑑
if 𝑖 is even), then we can compute 𝑣𝑖 , and then delete

the input that was just loaded. Finally, we save 𝑣𝑚 to slow memory.

This is a pebbling sequence that consists of 2𝑑 +𝑚 + 1 compute and

4 + (𝑚 − 1) I/O steps, hence 𝑠 := 2𝑚 + 2𝑑 + 4 steps altogether and a

cost of𝐶0 := 2𝑑 +𝑚 + 1 + (4 + (𝑚 − 1)) ·𝑔, both in the synchronous

setting with 𝐿 = 0 and in the asynchronous setting.

Intuitively, the cost of this solution can be reduced by replacing

one of the I/O steps with 𝑑 consecutive compute steps: instead of

loading e.g. 𝑢𝑑 , we can compute 𝑢1, ..., 𝑢𝑑 again. This decreases the

cost by 𝑔 − 𝑑 , but requires (𝑑 − 1) further steps in the sequence. If

we select 𝑔 ≥ 𝑑 , then this is indeed a solution of lower cost.

As such, consider an ILP representation of the problem with

𝑇0 := 𝑠 + 1 steps. If 𝑑 ≥ 3, then this does not allow us to recompute

𝑢𝑑 or𝑢′
𝑑
at any point, so the optimal solutionwill be the one outlined

above, consisting of 𝑠 steps; thus there can be an empty step in the

ILP representation. In fact, if we increase 𝑇0 to up to 𝑠 + (𝑑 − 2),
then there can be up to (𝑑 − 2) empty steps in an optimal solution.

However, once we have𝑇 = 𝑠 + (𝑑 − 1), we can recompute either 𝑢𝑑
or 𝑢′

𝑑
once, thus enabling a solution of cost 𝐶 := 𝐶0 − (𝑔 − 𝑑). □

C ILP-based scheduler
This section discusses the details of our ILP-based schedulingmethod.

C.1 ILP representation
Recall that our ILP representation of MBSP scheduling is cen-

tered around binary variables compute𝑝,𝑣,𝑡 , save𝑝,𝑣,𝑡 , load𝑝,𝑣,𝑡 ,

hasred𝑝,𝑣,𝑡 and hasblue𝑣,𝑡 , defined for each node 𝑣 , processor 𝑝

and discrete time step 𝑡 . For convenience, when the indices 𝑝 , 𝑣 and

𝑡 are considered or summed over the entire set of processors, nodes

and time steps, respectively, we will leave out this domain from the

notation; that is, we simply write

∑
𝑣 instead of

∑
𝑣∈𝑉 .

C.1.1 Fundamental constraints. Recall that the fundamental linear

constraints of the ILP are already summarized in Figure 3:

• constraint (1) ensures the validity of load steps,

• constraint (2) ensures the validity of save steps,

• constraint (3) ensures the validity of compute steps without

step merging,

• constraint (4) controls the presence of red pebbles,

• constraint (5) controls the presence of blue pebbles,

• constraint (6) ensures that a processor only executes a spe-

cific operation in a step (when we do not use step merging),

• constraint (7) enforces the memory bound,

• constraint (8) handles the initial state for red pebbles,

• constraint (9) handles the initial state for blue pebbles,

• constraint (10) handles the terminal state for blue pebbles.

14

Multiprocessor Scheduling with Memory Constraints: Fundamental Properties and Finding Optimal Solutions

These constraints already ensure the proper behavior of a pebbling

sequence.

Recall that the step merging optimization can allow us to reduce

the number of required time steps significantly; however, this also

comes with some changes to the rules above:

• to ensure that a processor only executes a specific kind of

operation in a step, we now use two extra binary variables

compstep𝑝,𝑡 and commstep𝑝,𝑡 . Then for all processors 𝑝

and time steps 𝑡 , we have∑︁
𝑣

compute𝑝,𝑣,𝑡 ≤ |𝑉 | · compstep𝑝,𝑡∑︁
𝑣

save𝑝,𝑣,𝑡 + load𝑝,𝑣,𝑡 ≤ 2 · |𝑉 | · commstep𝑝,𝑡 ,

and finally, we have

compstep𝑝,𝑡 + commstep𝑝,𝑡 ≤ 1 ;

• for the validity of compute steps, for edges (𝑢, 𝑣) ∈ 𝐸, pro-
cessors 𝑝 and time steps 𝑡 , we now instead have

compute𝑝,𝑣,𝑡 ≤ hasred𝑝,𝑢,𝑡 + compute𝑝,𝑢,𝑡 .

C.1.2 Supersteps and cost functions. We note that in this ILP rep-

resentation, the schedule is not directly organized into supersteps;

instead, the superstep will be formed from the consecutive blocks

of compute steps and I/O steps in the sequence.

For the asynchronous version of this problem, we do not even

need to consider the supersteps. In this case, the role of the function

𝛾 is fulfilled by continuous variables finishtime𝑝,𝑡 for all proces-

sors 𝑝 and time steps 𝑡 , and the role of Γ is fulfilled by continuous

variables getsblue𝑣 for all nodes 𝑣 . We also define a large constant

𝑀 = 𝑃 · (∑𝑣 𝜔 (𝑣) + 𝑔 · 𝜇 (𝑣)).
Recall that for finishtime𝑝,𝑡 , we have the constraint

finishtime𝑝,𝑡 ≥ finishtime𝑝,(𝑡−1) +

+
∑︁
𝑣

𝜔 (𝑣) · compute𝑝,𝑣,𝑡 + 𝑔 · 𝜇 (𝑣) · (save𝑝,𝑣,𝑡 + load𝑝,𝑣,𝑡) ,

and for the dependence on the slow memory, for all nodes 𝑣 , pro-

cessors 𝑝 and time steps 𝑡 , we have

getsblue𝑣 ≥ finishtime𝑝,𝑡 −𝑀 · (1 − save𝑝,𝑣,𝑡) ,
as well as

finishtime𝑝,𝑡 ≥ getsblue𝑣 +

+𝑔 ·
∑︁
𝑢∈𝑉

𝜇 (𝑢) · load𝑝,𝑢,𝑡 −𝑀 · (1 − load𝑝,𝑣,𝑡) ;

note that in contrast to the simplified version in Section 6.1, this

latter constraint also works with step merging. These constraints

motivate the ILP solver to only save each node 𝑣 to slow memory at

most once, at the save operation with the earliest finishing time; the

finishing time of this save step will be a lower bound on getsblue𝑣 .

When the value of 𝑣 is loaded to some processor 𝑝 , then the finishing

time of this operation can only start at the time getsblue𝑣 ; the

sum in the right hand side is the length of this loading operation,

so the condition indeed expresses its earliest finishing time.

Finally, acontinuous variable makespan is used with the con-

straints finishtime𝑝,𝑡 ≤ makespan for all 𝑝 and 𝑡 , and the objec-

tive is simply to minimize makespan.

In contrast, in the synchronous setting is more complex. Firstly,

we add a binary variable compphase𝑡 for each time step 𝑡 , and for

each 𝑡 , and require that∑︁
𝑣

∑︁
𝑝

compute𝑝,𝑣,𝑡 ≤ 𝑃 · |𝑉 | · compphase𝑡 .

Without stepmerging, we similarly define savephase𝑡 , loadphase𝑡

for save and load operations; with step merging, we instead have a

single binary variable commphase𝑡 and∑︁
𝑣

∑︁
𝑝

save𝑝,𝑣,𝑡 + load𝑝,𝑣,𝑡 ≤ 2 · 𝑃 · |𝑉 | · commphase𝑡 .

For all 𝑡 , we then also set compphase𝑡 + commphase𝑡 ≤ 1 or

compphase𝑡 + savephase𝑡 + loadphase𝑡 ≤ 1.

We then use binary variables compends𝑡 to indicate the end-

points of compute phases. The process is similar with commends𝑡

in case of step merging, and saveends𝑡 , loadends𝑡 without it.

We then use a continuous variable compuntil𝑝,𝑡 for all proces-

sors 𝑝 and time steps 𝑡 , for which we set

compuntil𝑝,𝑡 ≥ compuntil𝑝,(𝑡−1) +

+
∑︁
𝑣

𝜔 (𝑣) · compute𝑝,𝑣,𝑡 −𝑀 · commends𝑡 .

This constraint ensures that the compute costs of the nodes are

added up and increasing in the compuntil𝑝,𝑡 , but only until we

have a step with commends𝑡 = 1 (exactly before the beginning of

the next compute phase), where they can be set back to 0, since the

large constant𝑀 definitely makes the right side of the inequality

negative. The process is similar for I/O costs.

Finally, we have continuous variables compinduced𝑡 , which

ensure that these summed up costs are only added to the objective

function in the steps where we have compends𝑡 = 1. Recall that

for this, for all processors 𝑝 , we have

compinduced𝑡 ≥ compuntil𝑝,𝑡 −𝑀 · (1 − compends𝑡) ,
which also takes the maximum of the compute costs on the proces-

sors at the same time. The maximal I/O costs are again obtained

in an identical way with a variable comminduced𝑡 . Finally, the

objective of the ILP problem is to minimize the expression∑︁
𝑡

compinduced𝑡 + comminduced𝑡 + 𝐿 · commends𝑡 .

The above conditions are slightly different when the indices

(𝑡 − 1) or (𝑡 + 1) do not exist, and hence some variables are left out.

C.1.3 Further discussion. We also note that the values of some

of our binary variables is already pre-determined in the problem;

for instance, for a source node 𝑣 , we always have hasblue𝑣,𝑡 = 0

and compute𝑝,𝑣,𝑡 = 0. Due to the interface of the solver where it is

easier to create variables in arrays, it is more convenient to still have

these variables created. Then as a simpler solution, one could add

an extra constraint to fix these variables to the appropriate value;

with this, the preprocessing phase of a sophisticated ILP solver

can remove the corresponding variables from all their constraints.

Nonetheless, we have found that instead, it improves efficiency to

edit the corresponding linear constraints manually, and ensure that

these variables are never added at all.

Recall that in order to improve the efficiency of the solving

process, we always initialize the ILP solver with an initial MBSP

15

Pál András Papp, Toni Böhnlein, and Albert-Jan N. Yzelman

schedule that is foundwith the two-step approach. In our ILP, we set

the number of steps 𝑇 slightly higher than the number of (merged)

time steps in the ILP representation of this initial solution.

C.2 Divide-and-conquer algorithm
Recall that we also introduce an approach to handle DAGs of larger

size (e.g. a few hundred nodes) by splitting them into smaller sched-

uling subproblems. This divide-and-conquer approach consist of

several different steps.

Firstly, we want to partition the input DAG into smaller parts

such that the quotient graph is acyclic (often called an ‘acyclic

partitioning’ of the DAG). We can then develop a schedule for each

part independently, and then concatenate these into a schedule for

the whole DAG. We also want to ensure that the parts are relatively

disjoint from each other, with only a few edges between them.

This partitioning problem can also be formulated as an ILP, where

the number of cut hyperedges (which is a known to be an accu-

rate indicator of the amount of communicated data [37]) is in the

objective function, and the acyclicity condition is expressed with

linear constraints. The size of this ILP representation is significantly

smaller than the ILP of the scheduling problem on the same DAG,

since the partitioning problem does not include a time dimension

in the variables. Our experience shows that satisfying the acyclicity

constraint for more than 2 parts is significantly more challenging

for the COPT solver than for 2 parts; in fact, when we only have 2

parts (known as bipartitioning), COPT has almost always found the

optimal acyclic partitioning of any of our DAGs within a second.

As our first step, we use the ILP-based acyclic bipartitioning

method outlined above, and we apply this recursively to split the

DAG into smaller subDAGs of the desired size. In particular, in each

step, we consider one of our subDAGs that has 𝑛0 nodes, and if we

still have 𝑛0 > 60, then we further bipartition it acyclically into

two parts with at least 𝑛0/3 nodes in each.

Then as a second step, we create a scheduling plan for the quo-

tient graph with an adjusted version of the BSPg scheduling heuris-

tic [36]. In the quotient graph, we simply sum the weights 𝜔 and 𝜇

to assign weights to each contracted node. We can then naturally

modify the BSPg heuristic such that it allows to keep assigning

several processors to a node, with the corresponding execution

time reduced proportionally. The resulting high-level schedule tells

us which set of processors should be used for each partition, i.e.

each scheduling subproblem.

As discussed in Section 6.3, in the third step, we use our ILP-based

scheduler to find a good schedule for each scheduling subproblem,

with the appropriate modifications to the ILP representation.

As a final step, we concatenate the subDAG schedules into an

MBSP schedule for the entire problem. For each concrete subprob-

lem, the superstep indices are now adjusted to begin at the maximal

value of the current superstep indices of the processors used in

the subproblem. After this combined MBSP schedule is created,

there are a few technical steps to streamline and further improve

this schedule. For instance, we check if some of the consecutive

compute phases can be merged into a single superstep, which may

happen on the border of two consecutive subschedules. We also

check whether we can remove some delete steps that were artifi-

cially inserted at the border of two subschedules. For instance, if a

node 𝑣 only appears as a parent node in the first and third subDAGs,

then it is deleted from cache before the second subschedule (since 𝑣

is not even present in the corresponding ILP problem); however, if

the second subproblem does not utilize the cache to its full capacity,

we can potentially avoid this deletion of 𝑣 to forego a load operation

of 𝑣 in the third subDAG.

Recall that our experiments show that this approach is only able

to provide an improvement over the two-stage baseline on specific

DAGs; on others, it can actually return a worse MBSP schedule

than the baseline. This is due to the fact that the ILPs now only

capture a specific part of the problem, and the cost functions they

optimize is not the global optimum. It is a promising direction for

future work to gain a deeper understanding of this phenomenon,

and to identify specific applications or families of DAGs where our

divide-and-conquer approach can reliably outperform the baseline.

D Experiment details
Finally, we discuss details of the experiments and empirical results.

D.1 Experimental setup
As our main dataset, we use the smallest dataset of computational

DAGs from [36] called ‘tiny’ in their paper. This contains 3 coarse-

grained DAGs, and 3-3 fine-grained representations of different-

size instances of CG, SpMV, iterated SpMV and 𝑘-NN. We refer the

reader to [36] for more details.

We also use a small sample of 10 DAGs from the next dataset

(‘small’) of [36]. 9 out of these have between 264 and 322 nodes,

while one of the SpMV DAGs has 464 nodes.

Since the DAGs have nomemory weights, we assigned uniformly

and independently at random a weight 𝜇 (𝑣) ∈ {1, 2, 3, 4, 5} to each
node; this is in the same magnitude as the compute weights, so

with a choice of 𝑔= 1, this means that both the computation and

I/O costs play an important role in the problem.

We use the COPT ILP solver to find good solutions to our sched-

uling (sub)problems. While the solving process in COPT is highly

customizable, we do not explore this further, and leave most of the

parameters of COPT at their suggested default value.

As a baseline scheduler in the two-stage approach, we use the

BSPg scheduling heuristic from [36]. We also consider the Cilk

work-stealing scheduler for this task; a version of this scheduler

adapted to the BSP model is also included in our OneStopParallel

framework. For memory management, the clairvoyant algorithm

simply considers the following compute steps on the same processor

to establish for each value in cache when this value is next required

in the future. When having to evict a value from cache, it always

evicts the value that is not required for the longest time. Note

that in our implementation, values that are not required anymore

in the future are always evicted from cache automatically. As an

alternative memory management approach, we consider the ‘least

recently used’ method, which maintains for each value in cache

the last time they were active (computed or used as an input), and

whenever a value needs to be evicted, it selects the value that was

active the longest time ago.

Besides our algorithms, the OneStopParallel framework also

provides a test suite to run our experiments, which outputs the

costs of the obtained MBSP schedules into a .csv file.

16

Multiprocessor Scheduling with Memory Constraints: Fundamental Properties and Finding Optimal Solutions

Table 3: Cost of MBSP schedules on each instance of our main dataset. The 5 columns respectively correspond to: 1) our main
baseline (BSPg + Clairvoyant algorithm), 2) our ILP-based MBSP scheduler initialized with this main baseline, 3) the weaker
baseline of Cilk + LRU, 4) the stronger baseline of an ILP-based BSP scheduler + the Clairvoyant algorithm, and 5) our ILP-based
MBSP scheduler initialized with this stronger baseline. Note that the first two columns correspond to the values in Table 1.

Instance Baseline

Our ILP

for MBSP

Weak base

(Cilk+LRU)

BSP ILP

baseline

BSP ILP

+ our ILP

bicgstab 197 181 212 135 122

𝑘-means 158 106 163 100 98

pregel 206 152 210 160 145

spmv_N6 123 79 166 92 79

spmv_N7 120 77 138 92 75

spmv_N10 159 96 190 111 94

CG_N2_K2 283 267 310 214 194

CG_N3_K1 199 195 263 287 281

CG_N4_K1 229 208 268 324 314

exp_N4_K2 149 91 152 104 90

exp_N5_K3 185 144 251 214 147

exp_N6_K4 169 168 225 210 200

kNN_N4_K3 179 132 170 132 108

kNN_N5_K3 167 108 192 144 108

kNN_N6_K4 180 173 241 181 178

D.2 Experimental results
Recall that for our main experiment, we use 𝑃 = 4 processors, the

synchronous model with 𝐿 = 10, and a memory bound of 𝑟 = 3 · 𝑟0.
For completeness, we also present the costs of the concrete MBSP

schedules for each instance in Table 3. We also include the practical

baseline (Cilk + LRU) in this table, as well as the stronger baseline

with the ILP-based BSP scheduling.

The corresponding geomean factor improvements in cost are

listed in the main part of the paper. The results indicate that the

ILP-based scheduler can indeed improve significantly on the main

baseline. The factor of improvement also varies significantly be-

tween the concrete computational DAGs: the smallest improvement

is on exp_N6_K4, where the cost is only reduced by 1, whereas the

largest difference is on spmv_N10, and it amounts to a 0.60× factor.

When considering the two-stage baseline with the Cilk scheduler

and the LRU eviction policy, which may be more representative of

actual applications, we see that this returns weaker schedules than

our main baseline, and hence the improvements are even larger

with respect to these schedules. The smallest improvement with

respect to this baseline is observed on CG_N2_K2, and amounts to

0.86×. The largest improvement here is on the DAG spmv_N6, and

it amounts to a 0.48× factor.

We also see that in general, the two-stage approach with the ILP-

based BSP scheduler mostly returns stronger baseline schedules,

and from these initial solutions, our MBSP ILPs can often find even

better schedules in the end. Note that there are also some case

where the ILP-based baseline returns a weaker solution than our

main baseline. While counter-intuitive, this can indeed happen: the

BSP-based ILP scheduler is in fact optimizing for an inappropriate

cost function by ignoring the memory limitations. In these cases,

our own ILP-scheduler also ends up with a weaker MBSP schedule

in the end, since it is launched with a weaker initial solution.

For the remaining experiments, we only consider the main base-

line and the ILP method, and hence we show them in the same

column, separated by a ‘/’ sign. Table 4 contains the schedule costs
for some other variants of our experiments: with a memory bound

of 𝑟 = 5·𝑟0 or 𝑟 = 𝑟0, with 𝑃 = 8 processors instead of 4, with 𝐿 = 0,

and with the asynchronous cost function.

The data allows us to investigate how the different choices of the

memory bound parameter affect the cost of the schedules. The table

shows that going from 𝑟 = 3·𝑟0 to 𝑟 = 5·𝑟0 does not affect the baseline,
which suggests that this small change in the memory bound has

little effect on the problem as a whole. However, this still implies

that the ILP solver will make different decisions when exploring

the search space, and hence it often ends up with a significantly

different MBSP schedule. While the final cost is smaller in most

cases with 𝑟 = 5·𝑟0, there are also a few instances where the solver

ends up with a slightly worse solution, even though the memory

bound is looser.

In contrast to this, when the memory bound is set to the minimal

value of 𝑟 = 𝑟0, the costs of the schedules notably increase, and the

improvements to the baseline also drop, since this setting allows for

less freedom when designing our schedules. The largest increase

to the baseline in this setting is of a 0.69× factor on spmv_N6; for

all other instances, the value is above 0.96×.
17

Pál András Papp, Toni Böhnlein, and Albert-Jan N. Yzelman

Table 4: Cost of MBSP schedules with the baselines / our ILP methods in alternative cases: 1) with 𝑟 =5·𝑟0, 2) 𝑟 =𝑟0, 3) with 𝑃 =8,
4) with 𝐿=0, 5) with the asynchronous cost function.

Instance 𝑟 = 5·𝑟0 𝑟 = 𝑟0 𝑃 = 8 𝐿 = 0 async

bicgstab 197 / 146 221 / 213 176 / 173 117 / 89 92 / 83

𝑘-means 158 / 124 176 / 173 156 / 102 88 / 74 75 / 68

pregel 206 / 148 222 / 222 160 / 138 146 / 142 135 / 118

spmv_N6 123 / 79 167 / 116 104 / 75 83 / 55 70 / 54

spmv_N7 120 / 75 134 / 132 83 / 68 80 / 55 66 / 50

spmv_N10 159 / 96 215 / 215 124 / 69 119 / 80 104 / 79

CG_N2_K2 283 / 193 366 / 366 295 / 291 163 / 152 133 / 133

CG_N3_K1 199 / 194 343 / 341 176 / 176 129 / 116 112 / 107

CG_N4_K1 229 / 219 343 / 343 205 / 202 159 / 151 122 / 122

exp_N4_K2 149 / 95 201 / 195 138 / 84 89 / 80 71 / 67

exp_N5_K3 185 / 166 261 / 261 185 / 182 115 / 110 89 / 89

exp_N6_K4 169 / 167 257 / 254 165 / 165 99 / 97 83 / 80

kNN_N4_K3 179 / 110 242 / 242 143 / 105 109 / 95 78 / 76

kNN_N5_K3 167 / 120 213 / 212 162 / 101 107 / 94 86 / 84

kNN_N6_K4 180 / 178 302 / 297 190 / 190 120 / 111 87 / 87

When switching to 𝑃 =8 processors, we usually see a reduction

in the baseline cost, since there are now more opportunities to

parallelize the computation. However, the effects on the ILP cost

are more ambiguous, since this also comes with almost twice as

many variables in the ILP representation, and hence the task of the

ILP solver becomes significantly more challenging.

When changing 𝐿=10 to 𝐿=0, the costs of the schedules drop

significantly. The difference between the ILP and the baseline also

becomes slimmer in this case, since one of the main strengths of

the ILP approach is that it also directly considers and minimizes

synchronization costs, in contrast to the baseline.

Finally, in the asynchronous case, we again see schedules of

significantly lower cost. This setting is much more challenging for

our ILP-based solvers due to the interdependences between the

finishing time variables. We see that the improvement on the SpMV

instances still remains 0.76×-0.77×, but on many other instances,

the solver cannot improve on the initial solution at all.

Note that we also ran some experiments with a choice of 𝑃 =1,

which is essentially the single-processor red-blue pebble game of

Hong and Kung [19] extended with computation costs and node

weights. In this case, our baseline corresponds to a DFS ordering

combined with the clairvoyant cache eviction strategy. We found

that this is a rather strong baseline, and our schedulers could almost

never improve upon it. In particular, for 𝑟 = 3 ·𝑟0, the ILP only

improved upon the baseline for two instances: 0.89× for exp_N4_K2,
and 0.63× for exp_N5_K3. In case of 𝑟 = 𝑟0, the ILP could not

improve on the initial schedule at all for any of the instances.

We also briefly considered the ILP-based method without recom-

putation, i.e. when each node can only appear in a single compute

step over all processors and time steps. The BSPg scheduler also

fulfills this property, so the setting still allows us to use this baseline

for initializing the ILP without any changes; we only restrict the

search space for the MBSP schedules considered by the ILP solver.

This resulted in schedules of higher cost for 7 out of the 15 in-

stances, with the largest increase of 1.40× obtained on kNN_N5_K3.

However, there were also 6 instances where counter-intuitively,

this resulted in schedules of smaller cost in the end, since the ex-

tra constraints can also be a major help for the ILP solver when

optimizing the solution within a fixed time limit.

Finally, we briefly consider our approach on 10 DAGs from the

larger dataset. Due to the much larger size of these instances, we

used the divide-and-conquer ILP here. We also used 𝑟 = 5 ·𝑟0 to
accommodate these larger DAGs where we may have much more

intermediate steps before a given value in cache is reused.

The cost of the schedules in each instance is summarized in

Table 2. One can observe that the ILP can find significantly bet-

ter schedules on some instances: on the coarse-grained instances

simple_pagerank and snni_graphchallenge, the improvements are

0.77× and 0.60×, respectively, and on the SpMV instances spmv_N25

and spmv_N35, the improvements are 0.74× and 0.76×, respectively.
The cost also improves by 0.89× on the instance CG_N5_K4, and

is identical on CG_N7_K2. However, on the remaining instances,

the ILP-based schedule is actually worse than the baseline, with

a geomean increase of 1.24× and a largest increase of 1.29× on

exp_N15_K4. This effect is discussed in more detail in Section C.2.

18

	Abstract
	1 Introduction
	2 Related Work
	3 Model definition
	3.1 Transition rules and pebbling sequence
	3.2 Supersteps and schedule
	3.3 The cost of a schedule

	4 The two-stage approach
	4.1 Proof of suboptimality

	5 Further Fundamental Properties
	5.1 Computational Complexity
	5.2 Synchronous vs. Asynchronous Optimum

	6 An ILP-based solution
	6.1 ILP representation
	6.2 The number of time steps
	6.3 Divide-and-Conquer method

	7 Experiments and results
	7.1 Experimental setup
	7.2 Results

	8 Conclusion
	References
	A Model definition details
	B Proof details
	B.1 Proof details for Theorem 4.1
	B.2 Proofs of Lemmas 5.1 and 5.2
	B.3 Proofs of Lemmas 5.3 and 5.4
	B.4 Proof of Lemma 6.1

	C ILP-based scheduler
	C.1 ILP representation
	C.2 Divide-and-conquer algorithm

	D Experiment details
	D.1 Experimental setup
	D.2 Experimental results

