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ABSTRACT
We study an extension of the well-known red-blue pebble game
(RBP) with partial computation steps, inspired by the recent work
of Sobczyk [23]. While the original RBP assumes that we need to
have all the inputs of an operation in fast memory at the same
time, in many concrete computations, the inputs can be aggregated
one by one into the final output value. These partial computation
steps can enable pebbling strategies with much smaller I/O cost,
and in settings where such a step-by-step aggregation is possible,
this extended red-blue pebble game offers a much more realistic
cost model.

We establish the fundamental properties of this partial-computing
red-blue pebble game (PRBP), and compare it to the original RBP.
We begin with some simple examples where allowing partial com-
putations can decrease the optimal I/O cost. It is also shown that the
cost can decrease by up to a linear factor this way, but in general,
it is NP-hard to decide whether partial computations allow for a
smaller cost in a specific DAG. We then discuss how 𝑆-partitions, a
crucial tool for deriving I/O lower bounds in RBP, can be adapted to
the PRBP model. These new tools are then used to establish lower
bounds on the I/O cost of some prominent computational tasks.
Finally, we also adapt a hardness result from RBP, showing that
the optimum cost is still NP-hard to approximate in PRBP to any
reasonable factor.

CCS CONCEPTS
• Theory of computation→ Models of computation; • Computer
systems organization→ Processors and memory architectures.
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1 INTRODUCTION
The optimal execution of a complex computational task with limited
resources is a fundamental question in computer science, with ap-
plications ranging from scientific simulations to machine learning.
In many of these applications, the main performance bottleneck
is in fact the vertical data movements between different layers of
memory, known as I/O operations. One of the prominent tools
to analyze this problem is the red-blue pebble game of Hong and
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Kung [12], which captures the I/O complexity of a computation in
a two-level memory hierarchy: it studies the amount of vertical
communication required when we want to execute the computation
using a fast memory of limited size (e.g. cache), and a slow memory
of much larger capacity (e.g. RAM). This model has been a vital
tool to measure I/O complexity in different computations, and has
been studied extensively in the past decades.

As in most pebble games, the computation in red-blue pebbling
is modeled as a directed acyclic graph (DAG) 𝐺 = (𝑉 , 𝐸), with the
nodes 𝑉 representing subtasks or operations, and a directed edge
(𝑢, 𝑣) ∈ 𝐸 representing that the output of operation 𝑢 is required
as an input for operation 𝑣 . We denote the number of nodes in 𝐺
by 𝑛, and the maximum input and output degree by Δ𝑖𝑛 and Δ𝑜𝑢𝑡 ,
respectively. We assume that 𝐺 has no isolated nodes.

The red-blue pebble game, which we abbreviate by RBP, assumes
that we have a fast memory of some limited capacity 𝑟 , and a slow
memory of unlimited capacity. In order to compute a value, all of
its inputs need to be in fast memory. During the game, a red pebble
placed on a node 𝑣 represents the fact that that the output data of 𝑣
is currently kept in fast memory, and a blue pebble on 𝑣 represents
that it is currently kept in slow memory. In the initial state, only the
source nodes of 𝐺 have blue pebbles on them. A pebbling strategy
can then apply the following transition rules:

1) save: place a blue pebble on any node 𝑣 that has a red pebble.
2) load: place a red pebble on any node 𝑣 that has a blue pebble.
3) compute: if all the inputs of a non-source node 𝑣 have a red

pebble on them, then also place a red pebble on 𝑣 .
4) delete: remove a red pebble from any node 𝑣 .

A pebbling consists of a sequence of rule applications such that
finally, all the sink nodes of 𝐺 (i.e. the outputs of the computa-
tion) have a blue pebble. Furthermore, we require that at any point
during the pebbling, the number of red pebbles placed on 𝐺 is at
most 𝑟 , i.e. the fast memory capacity is not exceeded. The cost of a
pebbling strategy is defined as the total number of save and load op-
erations executed during the pebbling; intuitively, the compute and
delete steps are considered free; indeed, these are often significantly
cheaper in practice.

One fundamental property of RBP is that it requires all inputs
of an operation to be collected into fast memory at the same time.
Specifically, if a node 𝑣 has 𝑑 incoming edges in our DAG, then any
valid pebbling in RBP requires at least (𝑑+1) red pebbles simultane-
ously to compute this node: 𝑑 pebbles on the in-neighbors of 𝑣 , and
one more on 𝑣 . Hence a valid pebbling only exists if 𝑟 ≥ (Δ𝑖𝑛+1).

In a plethora of practical cases, however, the subtasks in our
computation are associative and commutative operators, e.g. the
addition of scalars or matrices, applied on a larger set of inputs.
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In this case, the separate inputs could be added to the aggregated
value in any specific order, or if desired, we could even decide to
first aggregate e.g. only half of the inputs of a node 𝑣 , store the tem-
porary result in (fast or slow) memory, then do some computations
in another part of the DAG, and finally continue processing the
remaining inputs of 𝑣 .

The idea of incorporating such partial computation steps into
RBP was recently raised by Sobczyk [23]. Allowing partial compu-
tations not only enables us to analyze I/O costs when 𝑟 < (Δ𝑖𝑛+1),
but it can also drastically reduce the number of required I/O steps
for DAGs with 𝑟 ≥ (Δ𝑖𝑛+1). Thus, while this extension restricts
the scope of RBP to computational DAGs with specific kind of op-
erators, it provides a much more accurate model of the actual I/O
cost of the computation in these domains.

In this paper, we provide a comprehensive analysis of the impact
of such partial computations on the red-blue pebble game. We begin
by discussing the fundamental properties of this partial-computing
red-blue pebble game (PRBP), and showing some example DAGs
where allowing partial compute steps indeed decreases the number
of required I/O operations. We then analyze how the optimum cost
on a given DAG differs in RBP and PRBP in general. In particular,
we show that partial computations can decrease the required I/O
cost by up to a linear factor, but in a general DAG, it is NP-hard to
decide whether they reduce the optimum cost at all.

We then focus on developing lower bounds on the I/O cost of
specific computations in PRBP. We first show in a counterexample
that lower bounds derived from 𝑆-partitioning, which is a standard
tool for RBP, do not directly carry over to PRBP. Instead, we dis-
cuss two different ways to modify the 𝑆-partitioning concept such
that the resulting bounds also apply to PRBP. We then use these
newly developed tools to derive I/O lower bounds in PRBP for some
paramount computational tasks, such as fast Fourier transform,
matrix multiplication, and self-attention in neural networks. These
are all extensively studied computations with known optimal I/O
complexity, and hence, unsurprisingly, the obtained PRBP lower
bounds are identical to those in RBP, i.e. partial computations do
not allow for a lower I/O cost in these specific DAGs. Nonetheless,
the formal proof of this fact is still a crucial step towards under-
standing the properties of these problems, and I/O complexity in
general. Furthermore, the potential impact of our new tools extends
beyond these classic, well-structured computations: they may also
be used in the future to study lower bounds for irregular graphs or
sparse computations.

Finally, by adapting a proof construction from RBP to PRBP, we
show that the best pebbling strategy in PRBP is still NP-hard to
approximate to an 𝑛1−𝜀 factor for any 𝜀 > 0.

2 RELATEDWORK
In general, pebble games on graphs have been used before to capture
various different aspects of computation, such as time-memory
trade-offs, non-determinism or reversibility [1, 5, 6].

The red-blue pebble game was introduced by Hong and Kung
to analyze the I/O complexity of a computational task [12]. Their
seminal paper also present 𝑆-partitionings, a vital tool to derive

corresponding I/O lower bounds on specific structured DAGs. 𝑆-
partitions were used to establish lower bounds for various com-
putations both in [12] and following works [10, 18]. Other papers
have used different methods to derive I/O lower bounds on concrete
computations [11, 13, 22]. Recently, there is also a growing interest
in using RBP to derive bounds on the I/O cost of crucial operations
in neural networks [15, 19].

Besides lower bounds, another natural direction of work is the
computational complexity of RBP. This includes NP-hardness of
different model variants [2, 7, 17] and inapproximability results [3],
as well as approximation algorithms for special cases [4, 11].

There are also several papers that discuss the idea of generalizing
the RBP model to multiple processors or to deeper memory hier-
archies [3, 4, 9, 20, 21]. However, these settings are typically very
complex, and thus the theoretical results are limited to concrete
DAGs or special cases.

A recent preprint [23] raises the idea of extending RBP with
partial computations. Our work is inspired by this approach, but
rather different both in terms of the model and the direction of the
results. In particular, the model of [23] assumes that all nodes have
an initialization value that always needs to be loaded from slow
memory, motivated by e.g. evaluating polynomials. This incurs an
extra I/O step for each sink non-sink node, and hence results in a
significantly different (often much higher) I/O cost for most DAGs
than either the original RBP or our model. Due to this, most claims
in our paper do not carry over to the setting of [23]. In contrast to
this, our PRBP model is a direct extension of RBP, where any RBP
pebbling strategy translates to a partial-computing PRBP solution
of the same I/O cost.

In terms of results, [23] mainly focuses on DAGs that are not
even computable in RBP due to 𝑟 < (Δ𝑖𝑛+1), and shows NP-hardness
and approximation methods for the edge case when the cache size
is only 𝑟 =2. In contrast, we focus on understanding the properties
of PRBP in general, and its relation to RBP, for example, how the
optimal I/O costs differ between the two models, and which general
results from RBP carry over to PRBP.

Regarding the actual model definition, we also change the termi-
nology from [23] slightly to align it with the original RBP terminol-
ogy. Specifically, we use “light red” and “dark red” pebbles to denote
the two different states of values kept in cache, to signify that these
all correspond to red pebbles in the original RBP. Furthermore, the
incoming edges of a node that are already aggregated into the final
value are not deleted, but rather marked in our case; this indicates
that the structure of the computation remains unchanged, and also
allows to extend the setting to re-computations.

3 PEBBLINGWITH PARTIAL COMPUTATIONS
In the partial-computing red-blue pebble game (PRBP), we have
two different kinds of red pebbles: a light red pebble on node 𝑣
indicates that the current value of 𝑣 is also up-to-date in slow
memory, whereas a dark red pebble indicates that the newest value
of 𝑣 is only present in fast memory, and thus, if ever needed in the
future, it has to be first saved to slow memory before deletion. The
total number of light and dark red pebbles on the DAG is again
bounded at any point by the fast memory size 𝑟 . Blue pebbles still
represent values in slow memory, and their number is unlimited.

2



The Impact of Partial Computations on the Red-Blue Pebble Game

At any point during a PRBP pebbling, a node 𝑣 will have one of
the following subsets of pebbles on it:

• no pebble, if its value is not stored anywhere,
• a blue pebble, if its value is only present in slow memory,
• a blue and a light red pebble, if its current value is present in

both fast and slow memory,
• only a dark red pebble, if the value of 𝑣 has been updated since

the last I/O operation on 𝑣 , and hence the new value is only
available in fast memory currently.

Since the computation of a node 𝑣 can now happen in multiple
iterations, we also mark the incoming edges of 𝑣 for the inputs that
have already been aggregated into the current value of 𝑣 . The final
value of 𝑣 only becomes available when all of 𝑣 ’s incoming edges
are marked; it is only after this point that the computation of 𝑣 is
finished. We can then start using 𝑣 as an input for its successor
operations, i.e. start marking the output edges of 𝑣 .

The concrete transition rules for PRBP are as follows:

1) save: replace a dark red pebble on any node 𝑣 by a blue and a
light red pebble.

2) load: place a light red pebble on any node 𝑣 that has a blue
pebble.

3) partial compute: consider an unmarked edge (𝑢, 𝑣) such that:
(i) all incoming edges of 𝑢 are marked, (ii) there is a (light or
dark) red pebble on𝑢, and (iii) there is either a (light or dark) red
pebble on 𝑣 , or no pebble on 𝑣 at all. Then replace all pebble(s)
on 𝑣 by a dark red pebble, and mark the edge (𝑢, 𝑣).

4) delete: remove a light red pebble from any node 𝑣 , or a dark
red pebble from a node 𝑣 that has all of its output edges marked.

The save and load rules naturally implement the transitions
between the states discussed above. The partial compute rule ag-
gregates another input into the value of 𝑣 ; the conditions ensure
that (i) 𝑢 is already fully computed, (ii) 𝑢 is in fast memory, and
(iii) either the current value of 𝑣 is in fast memory, or we are just
beginning to compute 𝑣 . Finally, the delete rule ensures that values
from fast memory can only be erased if they are either up-to-date
in slow memory, or not needed anymore. This prohibits us from
marking some incoming edges of 𝑣 , deleting 𝑣 ’s red pebble, and
then later getting a red pebble on 𝑣 simply by marking another
edge; if we want to remove the red pebble from 𝑣 before finishing
its computation, we need to save it to slow memory first.

Similarly to RBP, the initial state only has blue pebbles on the
source nodes. However, in the terminal state, we now not only
require that every sink has a blue pebble, but also that every edge
of the DAG is marked. At any point, the number of red pebbles
must be at most 𝑟 . As in RBP, the cost of a pebbling is defined as
the total number of save and load operations.

Note that in contrast to RBP, this game allows a valid pebbling
for any DAG with as few as 𝑟 = 2 red pebbles, by considering a
topological order of𝐺 and marking each incoming edge of the next
node, with the inputs loaded and outputs saved when necessary.

In our paper, we consider the one-shot version of RBP and PRBP,
which means that during a pebbling, the compute rule can be ap-
plied only once for every node 𝑣 ∈𝑉 in RBP, and only once for every
edge (𝑢, 𝑣) ∈𝐸 in PRBP. One-shot RBP is a prominent version in the

literature [4, 9, 10, 17]; we focus on this variant because allowing
so-called re-computation steps in PRBP would raise further model-
ing questions. In Section 8.1, we briefly discuss other variants of
RBP, and how the PRBP model extends to these settings.

4 FUNDAMENTAL PROPERTIES OF PRBP
One fundamental question about this extended model is how the
partial compute steps affect the optimal I/O cost of a specific com-
putation. For a given DAG 𝐺 and choice of 𝑟 , let us use OPT𝑅𝐵𝑃
and OPT𝑃𝑅𝐵𝑃 to denote the cost of the optimal pebbling strategy in
RBP and PRBP, respectively. We will only compare these metrics
for concrete cases when (Δ𝑖𝑛 + 1) ≤ 𝑟 , i.e. a valid pebbling exists
in both RBP and PRBP. Regarding notation, we will also use [𝑑] to
denote the set of integers {1, ..., 𝑑}.

First, one can observe that any pebbling strategy in RBP can
easily be converted into a PRBP strategy of the same cost, by simply
taking any compute step in RBP, and separating it into at most Δ𝑖𝑛
consecutive partial compute steps in PRBP.

Proposition 4.1. For any DAG and any 𝑟 ≥ (Δ𝑖𝑛+1), we have
OPT𝑃𝑅𝐵𝑃 ≤ OPT𝑅𝐵𝑃 .

Furthermore, note that both in RBP and PRBP, any valid pebbling
strategy needs to load every source node at least once, and needs
to save every sink node at least once. If the total number of source
and sink nodes in𝐺 is𝑚, then we refer to this value𝑚 as the trivial
cost, and we have OPT𝑅𝐵𝑃 ≥ 𝑚 and OPT𝑃𝑅𝐵𝑃 ≥ 𝑚.

4.1 Motivating examples
There are numerousDAGs and choices of 𝑟 with OPT𝑃𝑅𝐵𝑃 < OPT𝑅𝐵𝑃 ,
i.e. where allowing partial computations indeed decreases the opti-
mal I/O cost. We first discuss some simple examples.

Proposition 4.2. For the small example DAG in Figure 1 with

𝑟 = 4, we have OPT𝑅𝐵𝑃 = 3 but OPT𝑃𝑅𝐵𝑃 = 2.

Proof. Consider the DAG in Figure 1, with𝑢0, 𝑣0 and the dashed
edges also included. Note that both in RBP and PRBP, 𝑢0 needs to
be loaded in the beginning and 𝑣0 needs to be saved in the end, so
the I/O cost is at least 2.

In PRBP, the DAG can be pebbled without any further I/O steps.
The key to this is the partial computation of the node 𝑤3. After
loading 𝑢0, we first compute 𝑢1 and 𝑢2 (placing dark red pebbles
on them), and then delete the light red pebble from 𝑢0. We then
compute first along the edge (𝑢1,𝑤1), and then afterwards along
(𝑤1,𝑤3), partially computing 𝑤3. This puts a dark red pebble on
𝑤1 and then 𝑤3. The pebble from 𝑤1 can be deleted immediately
afterwards. Then similarly, we can compute along the edges (𝑢1,𝑤2)
and then (𝑤2,𝑤3), placing a dark red on𝑤2 and updating the dark
red on𝑤3, and then the pebble from𝑤2 can be deleted. After this,
we can compute𝑤4 (mark both its incoming edges) and delete the
reds from 𝑢1 and𝑤3. Finally, we can compute 𝑣1 and 𝑣2 (marking
their incoming edges in any order), delete the red pebbles from 𝑢1
and 𝑢2, compute 𝑣0, and save the value of 𝑣0.

In contrast to this, in RBP, we cannot compute the DAG without
a further I/O step. In particular, computing𝑤3 now requires a red
pebble on𝑤1,𝑤2 and𝑤3 at the same time. Due to this, when𝑤3 is
computed, we can only have a red pebble on one of the nodes from
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𝑢2

𝑢1

𝑣2

𝑣1
𝑤2

𝑤1

𝑤3

𝑤4

𝑢0 𝑣0

Figure 1: Example DAG for OPT𝑃𝑅𝐵𝑃 < OPT𝑅𝐵𝑃 , with 𝑟 = 4. For
Proposition 4.2, 𝑢0, 𝑣0 and the dashed edges are part of the
DAG; in this case, we have OPT𝑃𝑅𝐵𝑃 = 2 but OPT𝑅𝐵𝑃 = 3. For
Proposition 4.7, we disregard 𝑢0, 𝑣0 and the dashed edges, and
concatenate several copies of the remaining gadget.

{𝑢0, 𝑢1, 𝑢2}. If this red pebble is on 𝑢0 or 𝑢2, then we need to later
load 𝑢1 from slow memory to compute𝑤4. Otherwise, assume that
the red pebble is on 𝑢1. Then if 𝑢2 has a blue pebble, we need to
load 𝑢2 for computing 𝑣1; if 𝑢2 has no blue pebble, then we need to
load 𝑢0 again to compute 𝑢2. In either case, we need another I/O
step, hence OPT𝑅𝐵𝑃 ≥ 3. However, if 𝑢2 is computed after 𝑤4 by
loading 𝑢0 again, then we can indeed finish with only 3 I/O steps.

For completeness, we list the concrete steps of the optimal peb-
bling strategies in both PRBP and RBP in Appendix A.1. □

Towards a more practical example, consider a a fundamental
operation in linear algebra, namely, the multiplication 𝐴 ·𝑥 = 𝑦 of
an𝑚 ×𝑚 matrix 𝐴 with an𝑚 × 1 vector 𝑥 . The corresponding com-
putational DAG consists of𝑚2+𝑚 source nodes,𝑚2 intermediate
nodes with in-degree 2, and𝑚 sink nodes of in-degree𝑚.

Proposition 4.3. If 𝑚 ≥ 3 and 𝑚+3 ≤ 𝑟 ≤ 2𝑚, then for the

matrix-vector multiplication above, we have OPT𝑃𝑅𝐵𝑃 < OPT𝑅𝐵𝑃 .

Proof. In PRBP, we can devise a strategy that keeps the 𝑚
partially computed values of the output 𝑦 in fast memory, and
only uses 3 further red pebbles besides this. In particular, we can
iterate through the entries 𝑥𝑖 of the input vector, first loading 𝑥𝑖
into fast memory, and then for each row of the matrix, we load the
corresponding 𝐴 𝑗,𝑖 , multiply it with 𝑥𝑖 , and add this 𝑦 𝑗 . Note that
𝐴 𝑗,𝑖 can be deleted after computing 𝐴 𝑗,𝑖 ·𝑥𝑖 , and then 𝐴 𝑗,𝑖 ·𝑥𝑖 can
be deleted after updating 𝑦 𝑗 , so this only requires two red pebbles
besides the one on 𝑥𝑖 . Afterwards, 𝑥𝑖 can also be deleted. This
strategy comes with only the trivial I/O cost of OPT𝑃𝑅𝐵𝑃 =𝑚2 + 2𝑚.

In RBP, we can show that at least one non-trivial I/O step al-
ways happens between the computation of any two consecutively
computed sink nodes 𝑦 𝑗1 and 𝑦 𝑗2 . Note that computing 𝑦 𝑗1 requires
(𝑚 + 1) red pebbles simultaneously, and thus we can have at most
(𝑚 − 1) red pebbles in the remaining nodes. As such, there is an
index 𝑖 ∈ [𝑚] such that neither the source node 𝑥𝑖 nor the interme-
diate node 𝐴𝑖, 𝑗2 has a red pebble. If 𝐴𝑖, 𝑗2 already has a blue pebble,
then this means we have to load it before computing𝑦 𝑗2 . Otherwise,
if 𝐴𝑖, 𝑗2 has no pebble, then we need to load 𝑥𝑖 to compute it; note
that 𝑥𝑖 has been loaded before to compute 𝐴𝑖, 𝑗1 , so this is also a
non-trivial I/O. Altogether, this gives OPT𝑅𝐵𝑃 ≥ 𝑚2+3𝑚 − 1. □

4.2 Frequently used gadgets
We next analyze the behavior of some well-structured graphs in
PRBP, illustrated in Figure 2. These often appear as building blocks
in larger computations, or as gadgets in proof constructions.

4.2.1 Zipper gadget. One popular gadget in RBP is the zipper gad-
get from [3, 17]. This consists of two groups of𝑑 source nodes, and a
long chain where each node has incoming edges from the previous
chain node, and one of the two source groups alternatingly.

The key property of this gadget in RBP is that if 𝑟 = 𝑑 + 2, then
for each next node in the chain, we need to move 𝑑 red pebbles
from one group to the other. This results in 𝑑 load operations for
each chain node. As we increase 𝑟 , this I/O cost induced by each
step gradually decreases, and disappears completely at 𝑟 = 2𝑑 + 2.

In contrast, in PRBP with 𝑟 = 𝑑 + 2, once we have red pebbles in
one of the groups, we can compute the corresponding partial value
for each node of the chain, and save these into slow memory. Then
we can keep the red pebbles in the other group for the traversal
of the whole chain, and begin at each chain node by loading the
previously computed partial value. This only results in a cost of 2
for each chain node, which is a lower total cost when 𝑑 ≥ 3.

Proposition 4.4. If 𝑑 ≥ 3 and 𝑟 = 𝑑+2, then OPT𝑃𝑅𝐵𝑃 < OPT𝑅𝐵𝑃
in the zipper gadget.

4.2.2 Binary trees. Another structure that often occurs in the con-
text of RBP is a rooted binary (or 𝑘-ary) tree, i.e. a tree of depth 𝑑
with every non-leaf node having exactly 2 (or exactly 𝑘) distinct
in-neighbors. These trees often show up as smaller parts of concrete
computational tasks [19], or as examples to illustrate the properties
of different model variants [3].

In terms of pebbling, the most interesting behavior for binary
trees is observed when 𝑟 = 3. Due to their very regular structure,
the optimal pebbling strategy is easy to find in these DAGs. Note
that we always have to load the 2𝑑 leaves and save the root node,
so the trivial I/O cost is 2𝑑 + 1. Apart from this, in RBP, for each
node 𝑣 that is not in the bottom two levels (i.e., not a leaf or an out-
neighbor of a leaf), we will always need to save (and later reload)
one of the two in-neighbors of 𝑣 , in order to free up a red pebble
and also compute the other subtree of 𝑣 . This way, the number of
non-trivial I/O steps in the optimal RBP pebbling is

2 ·
(
1 + ... + 2𝑑−2

)
= 2𝑑 − 2 .

In contrast, in PRBP, the bottom 3 levels can be computedwithout
any I/O cost due to partial computations. However, every node 𝑣
above these levels once again requires 2 I/O steps, regardless of
whether save the partially computed value of 𝑣 and load it later, or
if we save one of 𝑣 ’s in-neighbors and load it later. Altogether, the
number of non-trivial I/O steps here is

2 ·
(
1 + ... + 2𝑑−3

)
= 2𝑑−1 − 2 .

In Appendix A.2, we discuss the pebbling strategy in more detail
for a small binary tree, and also outline the generalization of these
observations to 𝑘-ary trees.

Proposition 4.5. In binary trees of depth 𝑑 ≥ 3 with 𝑟 = 3, we
again have OPT𝑃𝑅𝐵𝑃 < OPT𝑅𝐵𝑃 .
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Figure 2: Illustration of some frequently used substructures and gadgets: the zipper gadget of [3, 17] with 2 · 𝑑 source nodes and
an alternating chain (left), a binary tree on 2𝑑 leaves with all edges pointing towards the root (middle), and a pebble collection
gadget from [17] with 𝑑 source nodes and a chain that periodically uses the different sources as an input (right).

4.2.3 Pebble-collecting gadgets. When proving properties of RBP
in a construction, there is often need for a gadget which ensures that
we need to place all red pebbles on it simultaneously, or otherwise
we incur some I/O cost. One example of such gadgets is the pyramid
gadget [7, 18], which is similar to a binary tree. Amore sophisticated
version of the gadget is the one from [17], shown in the right in
Figure 2. This consist of 𝑑 source nodes, and a long chain of ℓ nodes,
with the 𝑖-th node in the chain having in-edges from the (𝑖 − 1)-th
chain node and the (𝑖 mod 𝑑)-th source node.

This gadget ensures that if we use 𝑑 +2 red pebbles, then we
can pebble it without any I/O cost. However, if there is no point
in the pebbling where we have 𝑑 +2 red pebbles on the gadget
simultaneously, then the red pebbles have to be repeatedly reloaded,
incurring a cost of at least ℓ/𝑑 .

As a tool for future constructions, we show that the same gadget
ensures a similar behavior in PRBP. Note that with 𝑑 +2 red pebbles,
the gadget can also be pebbled in PRBP with only the trivial cost.

Proposition 4.6. If a PRBP strategy never has at least 𝑑+2 red
pebbles simultaneously on this gadget, then its cost is at least

ℓ
2𝑑 .

Proof. Assume that we never have 𝑑 + 2 red pebbles on the
gadget simultaneously. Let us split the chain into segments of length
2𝑑 ; we show that each segment incurs at least one I/O step. Let 𝑣1,
..., 𝑣2𝑑 denote the current chain segment. Consider the time when
we mark the edge (𝑣1, 𝑣2), and thus we have red pebbles on both
𝑣1 and 𝑣2. By assumption, we have at most 𝑑− 1 other red pebbles
in the gadget. As such, if we consider the 𝑑 source nodes and the
𝑑 chain nodes 𝑣𝑑+1, ..., 𝑣2𝑑 , there is at least one index 𝑖 ∈ [𝑑] such
that neither 𝑢𝑖 nor 𝑣𝑑+𝑖 has a red pebble. Then the computation
of 𝑣𝑑+𝑖 will require a load operation, on 𝑢𝑖 if the edge (𝑢𝑖 , 𝑣𝑑+𝑖 ) is
unmarked, and on 𝑣𝑑+𝑖 if it is marked already. This adds up to a
cost of ℓ

2𝑑 over the whole chain. □

4.3 On the ratio between OPT𝑅𝐵𝑃 and OPT𝑃𝑅𝐵𝑃
The previous examples also raise a natural question: how much
can the partial compute steps reduce the optimum cost? We show
below that this cost decrease can be very large in general, up to
a linear factor in 𝑛. Furthermore, this can also happen in DAGs
which, unlike the zipper gadget before, have very small degrees:
we show an example for a linear cost decrease in a construction
with Δ𝑖𝑛 = 2 and Δ𝑜𝑢𝑡 = 3.

Proposition 4.7. There exists a DAG construction with Δ𝑖𝑛 = 2
and Δ𝑜𝑢𝑡 = 3 such that OPT𝑅𝐵𝑃 = Θ(𝑛) and OPT𝑃𝑅𝐵𝑃 = 2.

Proof. The proof uses many copies of the gadget shown before
in Figure 1, concatenated in a serial fashion. That is, let us remove
the nodes 𝑢0, 𝑣0 and the dashed edges from the DAG in the figure.
Then consider many copies of the resulting gadget, always merging
node 𝑣1 of the 𝑖-th gadget with node 𝑢1 of the (𝑖+1)-th gadget, and
node 𝑣2 of the 𝑖-th gadget with node 𝑢2 of the (𝑖+1)-th gadget. In
the end, we reinsert the source 𝑢0 and add two edges towards 𝑢1
and 𝑢2 in the first gadget, and reinsert 𝑣0, and add two edges from
𝑣1 and 𝑣2 in the last gadget. Note that the gadget consists of only
8 nodes, so the resulting DAG contains Θ(𝑛) copies of the gadget.
Assume again that 𝑟 = 4.

As before, the trivial cost of 2 is unavoidable in both RBP and
PRBP. However, in PRBP, no further cost is required. If we have
a dark red pebble on both 𝑢1 and 𝑢2, we can compute the gadget
without further I/O steps as discussed before, placing dark red
pebbles on 𝑣1 and 𝑣2 in the end; then we can continue with the next
gadget similarly. Thus altogether, OPT𝑃𝑅𝐵𝑃 = 2.

On the other hand, in RBP, consider the subsequence of the
pebbling between first placing a red pebble on 𝑢1 and first placing a
red pebble on 𝑣1; we show that at least one I/O step happens in this
subsequence. Once again, when𝑤3 is computed, we need to have
red pebbles on all of {𝑤1,𝑤2,𝑤3} simultaneously, leaving only one
red pebble. If this last red pebble is not on 𝑢1, then 𝑢1 needs to be
loaded later to compute𝑤4. If the last red pebble is on𝑢1, then there
are two cases like before: if 𝑢2 has a blue pebble, then we need to
load 𝑢2 later for 𝑣1, and if 𝑢2 has no pebble, then we need to load
the input(s) of 𝑢2 to compute it. Thus every gadget incurs a cost of
at least 1; this adds up to a total of Θ(𝑛). □

4.4 Complexity of OPT𝑅𝐵𝑃 = OPT𝑃𝑅𝐵𝑃
It also turns out that in general, it is hard to decide whether partial
compute steps could decrease the optimal cost in a concrete DAG.

Theorem 4.8. Given a DAG 𝐺 and an integer 𝑟 , it is NP-hard to

decide whether OPT𝑃𝑅𝐵𝑃 < OPT𝑅𝐵𝑃 .

This is a more technical proof that requires a modified version
of a DAG construction from previous works [3, 17]. This allows
for a reduction from a version of the maximum independent set
problem. Recall that given an undirected graph 𝐺0 = (𝑉0, 𝐸0), an
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independent set in is a subset of nodes 𝑉 ′ ⊆ 𝑉0 that induces no
edges, and a maximum independent set is one that maximizes |𝑉 ′ |
over all possible independent sets in 𝐺0.

Definition 4.9. Let maxinset-vertex denote the following prob-
lem: given an undirected graph 𝐺0 and node 𝑣0 in 𝐺0, is there a
maximum independent set in 𝐺0 that contains 𝑣0?

Despite the extensive literature on clique and independent-set
problems, we are not aware that this specific variant has been
proven NP-hard, and hence we include a proof in Appendix A.3.

Lemma 4.10. The maxinset-vertex problem is NP-hard.

Proof sketch for Theorem 4.8. The main ingredient of the
reduction is the pebble collection gadget of Proposition 4.6, with
a choice of 𝑑 = 𝑟 − 2; we have shown that this works identically
in PRBP. Given a maxinset-vertex problem, for each node 𝑢0 in
𝐺0, we create two such gadgets, i.e. two groups of (𝑟 − 2) source
nodes, denoted 𝐻1 (𝑢0) and 𝐻2 (𝑢0), and their corresponding chains.
Besides this, for some parameter 𝑏, we merge the 𝑖-th node of
𝐻1 (𝑢0) and the 𝑖-th node of𝐻2 (𝑢0) into a single node for all 𝑖 ∈ [𝑏].
Finally, for each edge (𝑢1, 𝑢2) in 𝐺0, we replace a node in 𝐻2 (𝑢2)
by a node in the middle of the chain of 𝐻1 (𝑢1), and vice versa, we
replace a node in 𝐻2 (𝑢1) by a node in the middle of the chain of
𝐻1 (𝑢2).

With ℓ large enough, the gadgets ensure that we need to have
all the 𝑟 red pebbles on them simultaneously in any reasonable
solution. In particular, if for every gadget we use all the red pebbles
together to compute it, then the total cost in the whole DAG is less
than ℓ

2(𝑟−2) even in the worst case, whereas if we do not do this
for any single gadgets, the cost becomes at least ℓ

2(𝑟−2) according
to Proposition 4.6. Due to this, any reasonable pebbling strategy
comes down to the order of ‘visiting’ the gadgets, i.e. having all red
pebbles on them. If 𝐻1 (𝑢0) and 𝐻2 (𝑢0) are visited consecutively,
then this saves a cost of 𝑏 by not having to reload their merged
source nodes again. However, the set of groups visited consecu-
tively can only be an independent set in𝐺0, due to the dependencies
introduced between groups. As such, in both RBP and PRBP, the
optimal pebbling visits the gadget-pairs of a largest-possible inde-
pendent set in 𝐺0 consecutively. For more details on the main idea
of the construction, see [3, 17].

To extend this reduction idea to our current theorem, consider
the input node 𝑣0 from maxinset-vertex. We further take two sets
𝑍1, 𝑍2 of 3 nodes from 𝐻1 (𝑣0) and 𝐻2 (𝑣0), respectively. We add an
extra sink node𝑤 with edges from all 6 nodes in 𝑍1 and 𝑍2. Saving
the final value of𝑤 incurs an extra trivial cost of 1, so we disregard
this step in the analysis below.

If there is an optimal pebbling where 𝐻1 (𝑣0) and 𝐻2 (𝑣0) are
visited consecutively (i.e. 𝑣0 is contained in amaximum independent
set), we can easily create a point in the pebbling where all nodes
of 𝑍1 and 𝑍2 have a red pebble, by ensuring that the pebbles of 𝑍1
are the last ones from 𝐻1 (𝑣0) \ 𝐻2 (𝑣0) to be deleted, and that the
pebbles of 𝑍2 are the first ones from 𝐻2 (𝑣0) \𝐻1 (𝑣0) to be placed.
Assuming 𝑟 > 𝑏 + 7, we can easily compute 𝑤 at this point at no
extra cost in both RBP and PRBP. On the other hand, if 𝐻1 (𝑣0) and
𝐻2 (𝑣0) are not consecutive in any reasonable pebbling, then no
optimal visitation has pebbles on 𝑍1 and 𝑍2 simultaneously. In this

case, in PRBP, we can partially compute𝑤 from the inputs in 𝑍1,
save it to slow memory, load it back when 𝑍2 has red pebbles, and
finish computing it, at a further cost of only 2. However, in RBP, we
need to reload all 3 nodes of e.g. 𝑍1 once again when we only have
red pebbles on 𝑍2, and compute𝑤 at this point, incurring further
I/O cost of 3. As such, we have OPT𝑃𝑅𝐵𝑃 < OPT𝑅𝐵𝑃 if and only if
𝐻1 (𝑣0) and 𝐻2 (𝑣0) cannot be consecutive in an optimal pebbling,
i.e. when maxinset-vertex evaluates to false.

For more details on the construction, see Appendix A.4. □

5 S-PARTITIONS AND LOWER BOUNDS
One of the main applications of red-blue pebbling is to develop
lower bounds on OPT𝑅𝐵𝑃 , i.e. the number of required I/O steps for
specific computational DAGs from concrete applications. In both
the original paper of Hong and Kung [12] and many follow-up
works [10, 18], this is done via a special kind of DAG partitioning
concept that allows to derive such lower bounds. In this section,
we show that the same partitioning concept does not allow us to
directly develop bounds that carry over to PRBP.

5.1 S-partitions in RBP
As one of their main tools, Hong and Kung introduce the notion
of an 𝑆-partition of a DAG. To present this, we first define two
auxiliary concepts for a given subset of nodes 𝑉0 ⊆ 𝑉 in our DAG.

Definition 5.1. A subset 𝐷 ⊆ 𝑉 is a dominator for𝑉0 if every path
from a source node to a node in 𝑉0 contains a node of 𝐷 .

Definition 5.2. The terminal set of𝑉0 is the set of nodes in𝑉0 that
have no out-neighbors contained in 𝑉0.

Given these, an 𝑆-partition is defined as follows.

Definition 5.3. For a parameter 𝑆 ∈ Z+, an 𝑆-partition of 𝐺 is a
disjoint partitioning 𝑉1, ..., 𝑉𝑘 of the nodes of 𝑉 of 𝐺 such that

(i) there is no cyclic dependency among the 𝑉𝑖 , i.e. if 𝑢 ∈ 𝑉𝑖
and 𝑣 ∈ 𝑉𝑗 for 𝑖 > 𝑗 , then (𝑢, 𝑣) ∉ 𝐸;

(ii) for each 𝑉𝑖 , there is a dominator set of size at most 𝑆 in 𝐺 ;
(iii) for each 𝑉𝑖 , the terminal set of 𝑉𝑖 has size at most 𝑆 .

Hong and Kung show that if we have any valid RBP pebbling in
𝐺 with 𝑟 red pebbles, then we can use this to generate a 𝑆-partition
of𝐺 with 𝑆 = 2𝑟 , into𝑘 classes such that the I/O-cost of the pebbling
strategy is between 𝑟 ·𝑘 and 𝑟 · (𝑘−1). On a high level, this is obtained
by cutting up the pebbling strategy into smaller subsequences by
splitting after every 𝑟 -th I/O operation; we then create a class 𝑉𝑖
for each subsequence, and sort each node 𝑣 ∈𝑉 into the class of the
first subsequences which places a red pebble on 𝑣 . Intuitively, the
𝑖-th subsequence starts with at most 𝑟 red pebbles on 𝐺 , and can
load red pebbles on at most 𝑟 more nodes, so these 2𝑟 nodes are a
dominator for𝑉𝑖 : all nodes computed in the subsequence indirectly
come from these input values. Similarly, the 𝑖-th subsequence ends
with at most 𝑟 red pebbles on 𝐺 , and saves at most 𝑟 nodes to slow
memory; the terminal set of 𝑉𝑖 is a subset of these 2𝑟 nodes. We
refer the reader to [12] for more details.

Due to this, if MIN𝑝𝑎𝑟𝑡 (𝑆) denotes the minimum number of
classes that any 𝑆-partition of𝐺 has, then the I/O cost in𝐺 satisfies

OPT𝑅𝐵𝑃 ≥ 𝑟 · (MIN𝑝𝑎𝑟𝑡 (2𝑟 ) − 1) .
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As such, analyzing the 𝑆-partitions of concrete DAGs allow us to
derive lower bounds on their I/O cost.

5.2 S-partitions in PRBP
Since 𝑆-partitions are a very efficient tool to develop lower bounds
in RBP, it is natural to wonder whether the same lower bound
applies to PRBP. We answer this negatively: with partial computa-
tions, the optimal cost can be much lower than the bound in the
expression above.

Lemma 5.4. There exists a construction where OPT𝑃𝑅𝐵𝑃 = 𝑂 (1),
but we have MIN𝑝𝑎𝑟𝑡 (2𝑟 ) = Θ(𝑛), i.e., the smallest 𝑆-partition accord-

ing to [12] consists of Θ(𝑛) classes.

Proof. Consider the DAG in Figure 3 with 𝑟 = 3. PRBP allows
us to pebble this DAG with a trivial I/O cost of 8: we load one of the
source nodes 𝑢𝑖 , then sequentially go through each node 𝑤 ∈𝐻𝑖 ,
computing 𝑤 , marking the outgoing edge of 𝑤 (updating a dark
red pebble on 𝑣), and deleting𝑤 . After finishing all nodes of 𝐻𝑖 , we
can remove the red pebble from 𝑢𝑖 , and hence 3 red pebbles suffice.
Apart from loading the 𝑢𝑖 and saving 𝑣 , this requires no I/O steps.

Now consider an 𝑆-partition for this DAG with 𝑆 = 6. The parti-
tion cannot consist of a single class, since with 7 source nodes, there
exists no dominator set of size 6. Let 𝑉 ′ denote the class that con-
tains the sink node 𝑣 . Note that there is at least one group 𝐻𝑖 that
has none of its nodes in 𝑉 ′; otherwise, there exists no dominator
set of size 6 for 𝑉 ′. The nodes in this set 𝐻𝑖 have no out-neighbors
in their corresponding class (since 𝑣 ∈ 𝑉 ′), so all these nodes in 𝐻𝑖

are contained in the terminal set of their own class. As the terminal
sets can have size 6 at most, this implies that these nodes in𝐻𝑖 must
span ( |𝐻𝑖 | − 6)/6 classes at least. With |𝐻𝑖 | = Ω(𝑛), the 𝑆-partition
then consists of Θ(𝑛) classes at least. This means that the lower
bound obtained from the 𝑆-partition is also Ω(𝑛). □

We note that the DAG in the proof has Δ𝑖𝑛 > 𝑟 ; it remains an
interesting question to show a similar example with (Δ𝑖𝑛 + 1) ≤ 𝑟 .

6 LOWER BOUND TOOLS FOR PRBP
The lemma above suggests that the concept of 𝑆-partitioning needs
adjustments to provide a similarly useful tool for deriving I/O lower
bounds in PRBP. In this section, we show two different ways to
modify the definition of 𝑆-partitioning to achieve this. The first
method places the focus on the edges of the DAG instead of the
nodes, similarly to PRBP; this will give a general-purpose tool to
derive lower bounds in PRBP, much like the original 𝑆-partition
concept in RBP. The second one is a simpler approach that is closer
to the original 𝑆-partition, but with one of the conditions omit-
ted; this provides weaker lower bounds in general, but will offer a
notably simpler proof for one of the concrete application graphs.

Afterwards, we revisit some relevant application graphs where
I/O bounds were derived for RBP, and use our new tools to establish
the same bounds with partial computations.

6.1 𝑆-edge partitions
We first adapt our auxiliary definitions to an edge-based partition-
ing. Let 𝐸0 ⊆ 𝐸 be a subset of edges in 𝐺 .

𝑢1

𝑢7

𝑣

group 𝐻1 of
Θ(𝑛) nodes

group 𝐻7 of
Θ(𝑛) nodes

...

...

...

Figure 3: Construction for Lemma 5.4, consisting of 7 source
nodes 𝑢1, ..., 𝑢7, 7 distinct groups 𝐻1, ..., 𝐻7 of Θ(𝑛) nodes each,
and a single sink 𝑣 . The node 𝑢𝑖 always has edges to all the
nodes in 𝐻𝑖 , and all the nodes in 𝐻𝑖 have an edge towards 𝑣 .

Definition 6.1. A subset of nodes 𝐷 ⊆ 𝑉 is an edge-dominator for

𝐸0 if for every path 𝜋 that starts at a source node and contains an
edge in 𝐸0, it holds that 𝜋 contains a node of 𝐷 .

Note that if 𝑆𝑡𝑎𝑟𝑡 (𝐸0) denotes the starting points in 𝐸0, i.e.
𝑆𝑡𝑎𝑟𝑡 (𝐸0) = {𝑢 ∈ 𝑉 | ∃ 𝑣 ∈ 𝑉 with (𝑢, 𝑣) ∈ 𝐸0}, then 𝐷 ⊆ 𝑉 is an
edge-dominator for 𝐸0 if and only if it is a dominator for 𝑆𝑡𝑎𝑟𝑡 (𝐸0).

Definition 6.2. The edge-terminal set of 𝐸0 is the set of nodes
𝑉 ′ ⊆ 𝑉 with at least one incoming edge in 𝐸0, but no outgoing
edges in 𝐸0.

Note that this is a different concept from the terminal sets in
Definition 5.2: it could be that (𝑣1, 𝑣2) ∈𝐸0, (𝑣2, 𝑣3) ∉𝐸0 and (𝑣4, 𝑣3) ∈
𝐸0, thus both 𝑣2 and its out-neighbor 𝑣3 are in the edge-terminal
set, which is not possible in case of terminal sets.

With these, we can already define a similar concept to 𝑆-partitions
on the edges of our DAG.

Definition 6.3. An 𝑆-edge partition of 𝐺 is a disjoint partitioning
𝐸1, ..., 𝐸𝑘 of the edges of 𝐸 of 𝐺 such that

(i) the 𝐸𝑖 arewell-ordered in the sense that for (𝑢, 𝑣), (𝑣,𝑤) ∈ 𝐸
and 𝑖 < 𝑗 , we never have (𝑣,𝑤) ∈ 𝐸𝑖 and (𝑢, 𝑣) ∈ 𝐸 𝑗 ;

(ii) for each 𝐸𝑖 , there is an edge-dominator set of size at most
𝑆 in 𝐺 ;

(iii) for each 𝐸𝑖 , the edge-terminal set of 𝐸𝑖 has size at most 𝑆 .

Lemma 6.4. Given a DAG 𝐺 and an integer 𝑟 , if there is a PRBP

strategy of cost 𝐶 in 𝐺 with memory capacity 𝑟 , then there exists

a corresponding (2𝑟 )-edge partition of 𝐸 into 𝑘 classes such that

𝑟 · 𝑘 ≥ 𝐶 ≥ 𝑟 · (𝑘 − 1).
7
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Proof. Similarly to the analysis of 𝑆-partitions, we split the
PRBP strategy into subsequences of steps, with the 𝑖-th subsequence
ending at the (𝑟 ·𝑖)-th I/O operation in PRBP strategy, and the (𝑖+1)-
th subsequence starting immediately afterwards. If there are any
more steps after the last I/O operation, we can simply add these to
the last subsequence, too; these can only be delete operations that
can be omitted anyway. If the strategy contains𝐶 distinct I/O steps,
then this results in 𝑘 = ⌈𝐶𝑟 ⌉ subsequences. Note that every edge
(𝑢, 𝑣) is marked in exactly one partial compute step in our strategy;
if this compute step happens in the 𝑖-th subsequence (for 𝑖 ∈ [𝑘]),
then we add (𝑢, 𝑣) to the class 𝐸𝑖 .

The edge classes formed this way naturally fulfill property (i)
above: for (𝑢, 𝑣), (𝑣,𝑤) ∈ 𝐸, we can only mark (𝑣,𝑤) in PRBP after
(𝑢, 𝑣) has been marked.

For property (ii), let 𝑉𝑅 denote the set of nodes in the DAG that
have a (light or dark) red pebble when the 𝑖-th subsequence begins,
and let𝑉𝐵 be the set of nodes on which we execute a load operation
in the 𝑖-th subsequence. Note that |𝑉𝑅 | ≤ 𝑟 and |𝑉𝐵 | ≤ 𝑟 ; we show
that𝑉𝑅 ∪𝑉𝐵 is an edge-dominator (of size at most 2𝑟 ) for 𝐸𝑖 . Recall
that this is equivalent to𝑉𝑅 ∪𝑉𝐵 being a dominator for the node set
𝑆𝑡𝑎𝑟𝑡 (𝐸𝑖 ). For an induction, consider the nodes in 𝑆𝑡𝑎𝑟𝑡 (𝐸𝑖 ) in some
topological ordering. Let 𝑢 ∈𝑆𝑡𝑎𝑟𝑡 (𝐸𝑖 ) be the current node in this
ordering; note that there is at least one edge (𝑢, 𝑣) ∈𝐸𝑖 . Consider
the pebbles on node 𝑢 at the beginning of the 𝑖-th subsequence. If
𝑢 has a red pebble at this point, then 𝑢 ∈𝑉𝑅 . If 𝑢 has no red pebble
but it has a blue pebble, then its value needs to be loaded from slow
memory to mark (𝑢, 𝑣), so 𝑢 ∈𝑉𝐵 . In these cases, all paths from a
source to 𝑢 are covered by 𝑢 ∈𝑉𝑅 ∪ 𝑉𝐵 itself. Finally, if 𝑢 has no
pebble at all at the beginning of the 𝑖-th subsequence, then all of
𝑢’s in-edges are also marked within this subsequence. As such, all
in-neighbors of 𝑢 are also in 𝑆𝑡𝑎𝑟𝑡 (𝐸𝑖 ), and hence by induction, all
paths to any of these in-neighbors (and thus also all paths to 𝑢) are
also covered by 𝑉𝑅 ∪𝑉𝐵 .

Similarly, for property (iii), let 𝑉 ′
𝑅
now be the set of nodes in

the DAG with a red pebble at the end of the 𝑖-th subsequence, and
𝑉 ′
𝐵
be the nodes on which we execute a save operation in the 𝑖-th

subsequence. Every node 𝑣 in the edge-terminal set of 𝐸𝑖 has a dark
red pebble at some point in the 𝑖-th subsequence, since we mark an
incoming edge of 𝑣 . If a dark pebble remains on 𝑣 until the end of
the subsequence, then 𝑣 ∈𝑉 ′

𝑅
. If it is removed by a save step, then

𝑣 ∈𝑉 ′
𝐵
. Note that if 𝑣 is a sink node, we always have 𝑣 ∈𝑉 ′

𝑅
or 𝑣 ∈ 𝑉 ′

𝐵
:

if we remove the dark red pebble from it without a save operation,
then we cannot have a valid pebbling. Finally, if 𝑣 is not a sink, then
its dark red pebble could also be removed by a delete step in the
same subsequence, but only after all of its out-edges are marked,
too. In this case, at least one outgoing edge of 𝑣 is also in 𝐸𝑖 , and
hence 𝑣 is not in the edge-terminal set. Thus the edge-terminal set
has size at most 2𝑟 . □

We can again define MIN𝑒𝑑𝑔𝑒 (𝑆) as theminimal number of classes
in any 𝑆-edge partition of 𝐺 , which then gives us the following
lower bound on I/O cost.

Theorem 6.5. For the optimal cost in PRBP, we have

OPT𝑃𝑅𝐵𝑃 ≥ 𝑟 · (MIN𝑒𝑑𝑔𝑒 (2𝑟 ) − 1) .

6.2 𝑆-dominator partitions
For the second approach, we revisit a partitioning concept from [12].

Definition 6.6. An 𝑆-dominator partition of 𝐺 is a disjoint parti-
tioning 𝑉1, ..., 𝑉𝑘 of 𝑉 that fulfills properties (i) and (ii) of Defini-
tion 5.3, but not necessarily property (iii).

Note that this is a weaker concept with less requirements than
an 𝑆-partition; as such, if MIN𝑑𝑜𝑚 (𝑆) denotes the minimum num-
ber of classes that an 𝑆-dominator partition of 𝐺 must have, then
MIN𝑑𝑜𝑚 (𝑆) ≤ MIN𝑝𝑎𝑟𝑡 (𝑆), and as such, these kind of partitions yield
looser I/O lower bounds.

Nonetheless, 𝑆-dominator partitions still have relevance in our
case. In particular, we have seen in Lemma 5.4 that unlike RBP, a
PRBP strategy does not necessarily generate an 𝑆-partition. How-
ever, we show that it still always generates an 𝑆-dominator partition,
and thus similarly to before, we can establish a lower bound.

Theorem 6.7. For the optimal cost in PRBP, we have

OPT𝑃𝑅𝐵𝑃 ≥ 𝑟 · (MIN𝑑𝑜𝑚 (2𝑟 ) − 1) .

The claim follows directly from the lemma below.

Lemma 6.8. Given a DAG 𝐺 and an integer 𝑟 , if there is a PRBP

strategy of cost 𝐶 in 𝐺 with memory capacity 𝑟 , then there exists a

corresponding (2𝑟 )-dominator partition of 𝑉 into 𝑘 classes such that

𝑟 · 𝑘 ≥ 𝐶 ≥ 𝑟 · (𝑘 − 1).

Proof. Let us again divide our pebbling sequence into subse-
quences by splitting after each 𝑟 -th I/O operation. For every node
𝑣 ∈𝑉 , consider the last partial compute step that marks an in-edge
of 𝑣 , and sort 𝑣 into the subclass corresponding to the subsequence
that contains this last compute step. These last partial compute
steps clearly happen to the nodes in a topological order, so there
will be no cyclic dependence among the classes. As a special case,
if 𝑣 is a source node of the DAG, then let us place 𝑣 into the class of
the subsequence that first executes a load operation on 𝑣 .

It only remains to show condition (ii), i.e. a dominator set of
size 2𝑟 for each 𝑉𝑖 . This is very similar to the proof of property
(ii) in Lemma 6.4. For a specific 𝑉𝑖 , let 𝑉𝑅 denote the set of nodes
with a red pebble before the 𝑖-th subsequence begins, and𝑉𝐵 be the
set of nodes on which we execute a load operation within the 𝑖-th
subsequence. We again claim that 𝑉𝑅 ∪ 𝑉𝐵 is a dominator for 𝑉𝑖 ;
this already establishes property (ii), since |𝑉𝑅 ∪𝑉𝐵 | ≤ 2𝑟 . For an
induction, consider the nodes of 𝑉𝑖 in some topological order, and
let 𝑣 be the current node. Since 𝑣 ∈𝑉𝑖 , at least one of the incoming
edges of 𝑣 was marked during the 𝑖-th subsequence; this means
that at one point during the subsequence, 𝑣 must have a dark red
pebble. As before, if 𝑣 has a red pebble at the beginning of the
subsequence, then 𝑣 ∈𝑉𝑅 , and if 𝑣 only has a blue pebble (but no
red), then we have to load it from slow memory, so 𝑣 ∈𝑉𝐵 . In both
cases, 𝑣 ∈𝑉𝑅 ∪𝑉𝐵 , so all paths to 𝑣 are covered by 𝑣 itself. On the
other hand, if 𝑣 has no pebble at the beginning, then all in-edges of
𝑣 are marked during this subsequence. As such, all in-neighbors of 𝑣
must have a dark red pebble at some point during the subsequence,
so it follows by induction that all paths to the in-neighbors (and
thus also to 𝑣) are covered.

Finally, for the special case of source nodes, our assignment
ensures that they are always contained in the corresponding𝑉𝐵 . □
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Figure 4: Illustration of the𝑚-point FFT DAG for𝑚 = 8.

6.3 Lower bounds for concrete computations
We now apply the tools above to some concrete computations.

6.3.1 Fast Fourier Transform. Among the structured DAGs that
describe concrete computations, one of the most frequently studied
is the Fast Fourier Transform (FFT). Given some integer𝑚 (a power
of 2), the𝑚-point FFT graph, also known as the butterfly graph,
can be obtained recursively by taking two copies of the 𝑚

2 -point
FFT graph, labeling its sink nodes 𝑢1, ..., 𝑢𝑚 , adding a new layer
𝑣1, ..., 𝑣𝑚 , and adding edges from all 𝑢𝑖 to the nodes 𝑣 𝑗 with 𝑖 ≡ 𝑗

mod 𝑚
2 (see Figure 4).

The work of [12] already establishes a tight lower bound of
Ω
(
𝑚 log𝑚
log 𝑟

)
on these graphs via 𝑆-partitions, and looser bounds are

also obtained with spectral methods [13]. With our tools above, it is
straightforward to show that these bounds also carry over to PRBP.

Theorem 6.9. For the𝑚-point FFT DAG, we have

OPT𝑃𝑅𝐵𝑃 ≥ Ω

(
𝑚 log𝑚
log 𝑟

)
.

Proof. The proof of the same lower bound for RBP in [12]
actually does not rely on an 𝑆-partition of the DAG, only on an
𝑆-dominating partition. In particular, the authors show that

MIN𝑑𝑜𝑚 (𝑆) ≥ Ω

(
𝑚 log𝑚
𝑆 log 𝑆

)
.

With 𝑆 = 2𝑟 and our Theorem 6.7, this gives the claim above. □

6.3.2 Matrix Multiplication. Matrix multiplication is a fundamen-
tal operation in computer science, and also an essential building
block in various applications. Given two matrices of sizes𝑚1 ×𝑚2
and𝑚2 ×𝑚3, respectively, we consider the standard matrix mul-
tiplication algorithm which executes 𝑚1 ·𝑚2 ·𝑚3 multiplications.
The I/O-efficient execution of this algorithm has been extensively
studied before [12, 14]. Hong and Kung established a lower bound
of Ω

(
𝑚1 ·𝑚2 ·𝑚3√

𝑟

)
on OPT𝑅𝐵𝑃 using 𝑆-partitions. We show that the

same lower bound also carries over to partial computations.

Theorem 6.10. For standard matrix multiplication, we have

OPT𝑃𝑅𝐵𝑃 ≥ Ω

(
𝑚1 ·𝑚2 ·𝑚3√

𝑟

)
.

Proof. The claim can be shown by combining the original lower
bound proof of [12] with our 𝑆-edge partition concept. In the cor-
responding DAG, we have 𝑚1 · 𝑚2 sources, 𝑚2 · 𝑚3 sinks, and

𝑚1 ·𝑚2 ·𝑚3 internal nodes. Each internal node has exactly one
outgoing edge; let us call these internal edges. We consider where
the𝑚1 ·𝑚2 ·𝑚3 internal edges can be sorted in an 𝑆-edge partition.
The edge-terminal set of each 𝐸𝑖 contains at most 𝑆 sink nodes, and
the edge-dominator set of 𝐸𝑖 contains at most 𝑆 source nodes. The
proof in [12] shows that in the matrix multiplication DAG, for any
subsets of sources 𝑉1 and sinks 𝑉2 with |𝑉1 | ≤ 𝑆 , |𝑉2 | ≤ 𝑆 , there
are at most 𝑂 (𝑆3/2) internal nodes on the paths from nodes in 𝑉1
to nodes in 𝑉2. Thus any set of 𝑆 sources can be a dominator for
at most 𝑂 (𝑆3/2) internal nodes, and hence also an edge-dominator
for at most 𝑂 (𝑆3/2) internal edges in 𝐸𝑖 . As for internal nodes in
the edge-dominator of 𝐸𝑖 , we can have at most 𝑆 of them, each
covering at most one internal edge. As such, 𝐸𝑖 contains at most
𝑂 (𝑆3/2) + 𝑆 internal edges. Therefore, any 𝑆-edge partitioning has
at least Ω

(
𝑚1 ·𝑚2 ·𝑚3
𝑆3/2+𝑆

)
classes; this is a lower bound on MIN𝑒𝑑𝑔𝑒 (𝑆).

Selecting 𝑆 = 2𝑟 and applying Theorem 6.5, the claim follows. □

Note that the above theorem only considers the lower bound up
to a constant factor, showing that its magnitude is identical in RBP
and PRBP. However, recall that for the special case of𝑚1 =𝑚2 and
𝑚3 = 1 (matrix-vector multiplication), we have shown that we can
still have OPT𝑃𝑅𝐵𝑃 < OPT𝑅𝐵𝑃 .

6.3.3 Flash Attention. Due to the importance of the transformer
architecture in machine learning, the I/O-efficient implementation
of its crucial component, the self-attention mechanism, has been
exhaustively studied. Recent work [19] in this area also used RBP
to devise an I/O lower bound that matches the prominent Flash
Attention algorithm. While attention consists of several steps, its
main bottleneck is essentially matrix multiplication step 𝑄 · 𝐾𝑇 ,
where 𝑄 and 𝐾 are both matrices of size𝑚 · 𝑑 . Due to this, a lower
bound of Ω

(
𝑚2 ·𝑑√

𝑟

)
follows from matrix multiplication. The work

of [19] extends this with a stronger lower bound of Ω
(
𝑚2 ·𝑑2

𝑟

)
in

the so-called large cache regime when 𝑟 ≥ 𝑑2, which is indeed often
the relevant case in practice. We again adapt this bound to PRBP.

Theorem 6.11. For attention with standard matrix multiplication,

we have

OPT𝑃𝑅𝐵𝑃 ≥ Ω

(
min

(
𝑚2 · 𝑑
√
𝑟
,
𝑚2 · 𝑑2
𝑟

))
.

Proof. The first term follows from matrix multiplication as
in [19], and carries over to PRBP due to Theorem 6.10. The second
term is only smaller in the large cache regime, so assume 𝑟 ≥ 𝑑2.
Similarly to matrix multiplication, we can adapt the proof of [19]
by shifting the analysis to internal edges instead of internal nodes.
On a high level, consider an 𝑆-edge partition with 𝑆 = 2𝑟 , and
focus on the internal edges in 𝐸𝑖 . We have at most 2𝑟 internal
nodes in the edge-dominator of 𝐸𝑖 , covering at most 2𝑟 internal
edges in 𝐸𝑖 . The remaining internal edges must be dominated by
source nodes. Assume that these remaining edges go towards 𝑐
sink nodes altogether, and these 𝑐 entries in 𝑄 · 𝐾𝑇 span 𝑐𝑖 rows
in 𝑄 and 𝑐 𝑗 columns in 𝐾𝑇 . Then the edge-dominator of 𝐸𝑖 must
contain (𝑐𝑖 +𝑐 𝑗 ) ·𝑑 source nodes. Note that 𝑐 ≤ 𝑐𝑖 ·𝑐 𝑗 means

√
𝑐 ≤

𝑐𝑖 +𝑐 𝑗 , and hence (𝑐𝑖 +𝑐 𝑗 ) ·𝑑 ≤ 2𝑟 implies 𝑐 ≤ 4·𝑟 2
𝑑2 . Since their

in-degree is 𝑑 , the 𝑐 sink nodes can be the endpoints of at most 4·𝑟 2
𝑑
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internal edges in 𝐸𝑖 . Together with the 2𝑟 internal edges mentioned
earlier, and using 𝑟 ≥ 𝑑2, we get that 𝐸𝑖 has at most𝑂

(
𝑟 2

𝑑

)
internal

edges. With altogether𝑚2·𝑑 internal edges in the DAG, we get that
MIN𝑒𝑑𝑔𝑒 (2𝑟 ) ≥ Ω

(
𝑚2 ·𝑑2

𝑟 2

)
, and the bound follows from Theorem 6.5.

□

7 FINDING THE OPTIMAL PEBBLING
Finally, we discuss the complexity of finding the best pebbling
strategy in PRBP. In particular, we show that it is NP-hard to even
approximate OPT𝑃𝑅𝐵𝑃 to any non-trivial factor. The same hardness
result has been shown for the original RBP in recent work [3];
however, in order to extend this proof technique to PRBP, we need
to modify the gadgets used in their construction.

Theorem 7.1. It is NP-hard to approximate OPT𝑃𝑅𝐵𝑃 to any 𝑛1−𝜀

additive term or multiplicative factor (for any 𝜀 > 0).

Proof sketch. The construction of [3] shows that it is already
NP-hard to distinguish between an I/O cost of 2 and an I/O cost of
𝑛1−𝜀 . The main ingredients in this construction are the so-called
level gadgets; we need modify these so that they still ensure the
same desired properties in PRBP when we have partial computa-
tions. With the level gadgets adjusted, the rest of the construction
can remain unchanged, proving the same hardness result for PRBP.
For more details on the original proof, we refer the reader to [3].

Intuitively, each level gadget is a chain (𝑢1, ..., 𝑢ℓ ). Between two
consecutive levels (𝑢1, ..., 𝑢ℓ ) and (𝑣1, ..., 𝑣ℓ ′ ), we also have the edges
(𝑢𝑖 , 𝑣𝑖 ) for 𝑖 ≤ min(ℓ, ℓ′), and if ℓ > ℓ′, then also (𝑢𝑖 , 𝑣ℓ ′ ) for all
ℓ′ < 𝑖 ≤ ℓ . The DAG itself then consists of sequences of consecutive
levels, called towers, with the size of each level chosen carefully.
In order to adjust the construction, we will simply add auxiliary

levels between the original levels of the construction: for each level
(𝑢1, ..., 𝑢ℓ ), we add a specific number of new levels of size ℓ between
this level and the level before. One such auxiliary level is illustrated
in Figure 5. These changes do not affect the optimum cost in RBP.

Even by adding only 1 auxiliary level, we can already ensure
that some aspects carry over to PRBP, e.g. establishing precedence
constraints between levels. More specifically, in RBP, it is natural
that if we have edges from (all nodes of) a level 𝐿 in one tower to (all
nodes of) a level 𝐿′ in another tower, then we need to compute all
nodes in 𝐿 before placing a red pebble on any node of 𝐿′. However,
in PRBP, we could already start partially computing 𝐿′ before all
nodes in 𝐿 are fully computed, which makes the analysis more
difficult. In our adjusted construction, we now draw the edges from
𝐿 not to 𝐿′, but to the newly inserted auxiliary level 𝐿′𝑎 before 𝐿′.
With partial computations, we can still place red pebbles on 𝐿′𝑎
before fully computing 𝐿; however, we can only start placing red
pebbles on 𝐿′ once all incoming edges of the node below in 𝐿′𝑎 are
marked. This again ensures that we can only start pebbling 𝐿′ after
𝐿 in the other tower is fully computed.

The most critical role of levels, intuitively, is to ensure that when
𝐿 = (𝑢1, ..., 𝑢ℓ ) is the last computed level in a tower, then we need to
keep at least ℓ red pebbles in this tower (or pay an I/O cost). Let ℓ′ be
the size of the level after 𝐿. When we have ℓ′ ≥ ℓ , this property car-
ries over easily to PRBP. The tricky part is when ℓ′ < ℓ , where PRBP
would allow us to free up the red pebbles from all of 𝑢ℓ ′+1, ..., 𝑢ℓ by
partially computing the last node of the next level, which is the only

Figure 5: Adding an auxiliary level (dotted grey part) to the
level gadgets of the construction in [3]. Auxiliary levels al-
ways have the same size as the original level above them.

node that depends on them. To resolve this, in these cases, we add
(ℓ−ℓ′+2) auxiliary levels after 𝐿, and draw edges from 𝑢ℓ ′+1, ..., 𝑢ℓ
to the last node in all of these new levels. Intuitively, this ensures
that the number of nodes depending on 𝑢ℓ ′+1, ..., 𝑢ℓ is more than
(ℓ−ℓ′), and hence we cannot free up more red pebbles with the
previous approach, i.e. partially computing these dependent nodes
and then deleting the pebbles from 𝑢ℓ ′+1, ..., 𝑢ℓ .

Further details of the proof are discussed in Appendix A.5. □

8 CONCLUSION AND DISCUSSION
We have seen that introducing partial computations into the red-
blue pebble game can significantly change the optimal I/O cost
in several computations. Even when the optimal cost remains un-
changed, it necessitates new tools and theorems in order to carry
over previously established I/O lower bounds to this more realistic
model. We conclude with a brief discussion on some alternative
variants of the model and some practical insights.

8.1 Alternative model variants
Except for the one-shot property, we defined and analyzed RBP
according to its original definition of Hong and Kung [12], which
is the most well-known version of the game. However, different
variants of RBP were also studied before. We briefly outline how
these relate to PRBP, and discuss more details in Appendix B.

If we remove the one-shot restriction, we obtain a model where
the same node may be computed multiple times, which can be
used sometimes to save I/O costs. This variant has been studied
by Hong and Kung and others [12, 17]. The main modeling chal-
lenge here is that re-computation could be defined in multiple
different ways in the partial-computing setting. Note that allowing
re-computation can have a different effect on our theorems: for in-
stance, Theorem 4.8 carries over easily to this case, Proposition 4.7
can be adapted with minor changes, whereas adapting e.g. the tools
in Section 6 is more challenging.

Another variant of RBP also allows a different compute step
which ‘slides’ a red pebble to 𝑣 from one of its inputs. The sliding
model aims to capture in-place computations; this is somewhat
similar to PRBP, which also assumes that the inputs of 𝑣 are ag-
gregated into 𝑣 in an in-place fashion. However, in general, partial
computations are a notably more powerful tool for saving I/O costs;
in particular, our Proposition 4.7 is easy to adapt to the case when
OPT𝑅𝐵𝑃 is understood in the sliding model.

In another extension towards practice, we also assign a small
constant cost to the compute steps [2, 17]. In the one-shot model,
this only adds a fixed cost to any pebbling; however, this does
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change the ratio between optimal costs, and hence affects e.g. The-
orem 7.1. Note that in order to compare OPT𝑅𝐵𝑃 and OPT𝑃𝑅𝐵𝑃 here,
one would need to define how the node-based compute costs in
RBP are translated into edge-based partial compute costs in PRBP.

8.2 Practical remarks and future directions
While the usage of partial computations to reduce I/O cost has not
been formalized and studied in general DAGs earlier, the general
idea has of course been applied before (directly or indirectly) in
several applications. For instance, we have seen how partial compu-
tations can reduce the I/O cost in a matrix-vector multiplication. In
the case of dense matrix-matrix multiplication, the same approach
is known as the outer-product formulation and e.g. used as the
inner microkernel to state-of-the-art methods such as BLIS [24]. In
a broader sense, our results also indicate that e.g. in generalized lin-
ear algebraic programs, the distributive property of semirings can
be exploited for practical gains; the same fact has been evidenced
before when exploiting re-computation to tile through successive
operations (e.g. [8, 16]).

We find that one particularly promising direction for future work
is the version of the PRBP model extended with re-computations.
This model incorporates two very natural methods to reduce the
I/O cost of a computation in practice, and hence it would be essen-
tial to understand its general properties, and to analyze the cost
of linear algebraic or other computations in this model. Another
natural step towards practice is to generalize the PRBP model to
computations that have both associative and non-associative op-
erations, e.g. allowing for partial computations as long as a given
order of the inputs is respected.
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A FURTHER PROOF DETAILS
A.1 Details for Proposition 4.2
For completeness, we list here the steps of the pebbling strategies
that pebble the DAG with the discussed costs in our first example.

The steps of a RBP strategy with 𝑟 = 4 that only uses 3 I/O
steps is as follows: load 𝑢0; compute 𝑢1; delete 𝑢0; compute𝑤1;
compute 𝑤2; compute 𝑤3; delete 𝑤1; delete 𝑤2; compute 𝑤4;
delete𝑤3; delete 𝑢1; load 𝑢0; compute 𝑢2; delete 𝑢0; compute
𝑣1; compute 𝑣2; delete𝑤4; delete 𝑢2; compute 𝑣0; save 𝑣0.

The steps of a PRBP strategy with 𝑟 = 4 that only uses 2 I/O
steps is as follows: load 𝑢0; partial compute (𝑢0, 𝑢1); partial
compute (𝑢0, 𝑢2); delete 𝑢0; partial compute (𝑢1,𝑤1); partial
compute (𝑤1,𝑤3); delete𝑤1; partial compute (𝑢1,𝑤2); partial
compute (𝑤2,𝑤3); delete 𝑤2; partial compute (𝑢1,𝑤4); par-
tial compute (𝑤3,𝑤4); delete 𝑢1; delete𝑤3; partial compute
(𝑤4, 𝑣1); partial compute (𝑤4, 𝑣2); partial compute (𝑢2, 𝑣1); par-
tial compute (𝑢2, 𝑣2); delete 𝑤4; delete 𝑢2; partial compute
(𝑣1, 𝑣0); partial compute (𝑣2, 𝑣0); save 𝑣0.

A.2 Binary and 𝑘-ary trees
For a more detailed discussion of the best pebbling strategies on
binary trees, consider the tree on Figure 2which has depth𝑑 = 3 and
8 leaf nodes. Let us denote the root node here 𝑣0, the in-neighbors
of the root 𝑣1,1 and 𝑣1,2 from left to right, the nodes on the third
level 𝑣2,1, ..., 𝑣2,4 from left to right, and the leaf nodes 𝑣3,1, ..., 𝑣3,8
from left to right.

In RBP, computing any of the nodes 𝑣2,𝑖 here requires all the
𝑟 = 3 red pebbles. As such, after computing 𝑣2,1, we need to save it
to slow memory to free up the red pebbles and compute 𝑣2,2. We
can then load 𝑣2,1 and compute 𝑣1,1. We can delete the red pebbles
from all of 𝑣1,1, 𝑣2,1 and 𝑣2,2, but 𝑣1,1 has to be saved before. We can
then compute the value of 𝑣1,2 in the same way with two more I/O
operations. Finally, we have to reload 𝑣1,1, compute 𝑣0 and save 𝑣0.
We have used 6 I/O operations apart from the 9 trivial I/O steps.

In PRBP, we can compute any 𝑣2,𝑖 with only two red pebbles
without any I/O, by loading one of the corresponding sources, par-
tially computing the 𝑣2,𝑖 , then deleting the source and loading the
other one, and finishing the computation of 𝑣2,𝑖 . Due to this, we
can compute 𝑣2,1 first, keep the red pebble on it and compute 𝑣2,2
with the other two red pebbles. We can then compute 𝑣1,1, but then
we need to save it and remove its red pebble. We can then compute
𝑣1,2 identically, load 𝑣1,1, and compute and save 𝑣0. Note that apart
from the trivial 9, we only used 2 more I/O steps.

While 𝑘-ary trees are significantly less frequent in the pebbling
literature, we briefly note that our observations on binary can
also be generalized to this case. Once again, the most interesting
behavior happens when 𝑟 = 𝑘 + 1. Similarly to binary trees, the
trivial I/O cost is 𝑘𝑑 + 1. Let us assume for convenience that 𝑑 ≥ 𝑘 .

In RBP, with the exception of the bottom two levels, again for
every node 𝑣 we have (𝑘−1) in-neighbors whose values will need to
be saved and reloaded later to free up pebbles and compute the last
subtree of 𝑣 . Altogether, the number of non-trivial I/O operations
in the optimal pebbling becomes

2 · (𝑘 − 1) ·
𝑑−2∑︁
𝑖=0

𝑘𝑖 = 2 · (𝑘𝑑−1 − 1) .

In PRBP, on the other hand, partial computations allow us to
compute the bottom 𝑟 = 𝑘 + 1 levels without any I/O steps. Every
node 𝑣 above these levels will again require 2 · (𝑘 − 1) I/O steps,
regardless of whether we compute 𝑣 partially in several iterations,
or if we save (𝑘 − 1) of its in-neighbors and load them all later. The
number of non-trivial I/O steps here is altogether

2 · (𝑘 − 1) ·
𝑑−(𝑘+1)∑︁

𝑖=0
𝑘𝑖 = 2 · (𝑘𝑑−𝑘 − 1) .

Note that the formulas above show that there is almost a factor
𝑑𝑘−1 difference in the non-trivial I/O cost. Altogether, adding the
trivial cost of 𝑘𝑑 + 1, we get that OPT𝑅𝐵𝑃 = 𝑘𝑑 + 2𝑘𝑑−1 − 1 and
OPT𝑃𝑅𝐵𝑃 = 𝑘𝑑 + 2𝑘𝑑−𝑘 − 1.

A.3 Proof of Lemma 4.10
We next prove that the maxinset-vertex problem is NP-hard. Note
that any independent set of𝐺0 becomes a clique of the same size in
the complement graph of 𝐺0, and vice versa. As such, equivalently,
we could define a maxcliqe-vertex problem that asks whether
any of the cliques of maximum size in 𝐺0 contain the node 𝑣0. We
use this clique interpretation of the problem in the proof below,
since we find it more intuitive.

Lemma A.1. The maxclique-vertex problem is NP-hard.

Proof. Assume that there is a polynomial-time algorithm A
for maxcliqe-vertex; we show how to use it to find a maximum
clique in polynomial time, which is known to be NP-hard.

Given a graph 𝐺0 on 𝑛 nodes, if all nodes have degree (𝑛 − 1),
then the entire graph is a clique, and we are finished. Otherwise, we
can invokeA for each node of𝐺0 separately. If there are any nodes
𝑣 in𝐺0 that are not included in anymaximum clique, we can remove
these nodes (and their incident edges). This leaves all maximum
cliques intact, so we can then recursively apply our algorithm on
the remaining graph. On the other hand, if all nodes are included in
a maximum clique, then consider an arbitrary node 𝑣 with degree
strictly less than (𝑛 − 1). This implies that there is another node 𝑢
in𝐺0 that is not adjacent to 𝑣 . Note that𝑢 is also part of a maximum
clique, and this does not include 𝑣 ; as such, even after removing 𝑣 ,
at least one of the maximum cliques in the graph remains intact.
Hence we can again remove 𝑣 (and its incident edges), and invoke
our algorithm on the remaining graph. □

As discussed, theNP-hardness of maxinset-vertex andmaxcliqe-
vertex are equivalent, so Lemma A.1 follows naturally.

A.4 Proof details for Theorem 4.8
Below we discuss some further details for the proof of Theorem 4.8.
Note that the main idea of the original construction is analyzed in
more detail in [3, 17].

Firstly, we note that the original construction of [17] does not
initially use the gadget of Proposition 4.6 to form the groups𝐻1 (𝑢0)
and𝐻2 (𝑢0), but instead just takes the same source nodes, and draws
an edge from all of them to a single node. In RBP this already ensures
that we need to have a red pebble on all the nodes of the gadget
simultaneously. The pebble collection gadget is then only used to
adapt the construction to a setting where the indegree of the DAG

12



The Impact of Partial Computations on the Red-Blue Pebble Game

is bounded by a small constant. In contrast to this, in PRBP, the use
of the gadget is essential; with partial computations, adding just a
singe target node would not guarantee that we need to have a red
pebble on all the inputs simultaneously.

Furthermore, we note that in the construction, we also make
sure that there are at least 3𝑛0 further anchor nodes in each 𝐻1 (𝑢0)
and 𝐻2 (𝑢0) that only belong to this specific gadget. These nodes
are used ensure that interrupting the computation of the gadget
is a suboptimal strategy. Recall that we say that a gadget 𝐻1 (𝑢0)
or 𝐻2 (𝑢0) is visited when all the red pebbles are on the nodes of
the corresponding gadget. It is then always suboptimal to visit a
specific gadget twice with another gadget visited in-between, since
this requires an I/O cost of at least 3𝑛0 to reload the anchor nodes.
If we instead go over the chain, save all the nodes in it that are
included in another gadget 𝐻2 (and then reload them later when
needed), and then save the sink node of the chain, then this results
in an I/O cost of less than 3𝑛0 altogether.

The main idea of selecting the chain size ℓ large enough in the
gadgets has already been outlined. In practice, the proof is a bit
more technical with two different length parameters ℓ and ℓ0. The
total length of the chain will be ℓ , and the chain will consist of an
initial part of length 2(𝑟 − 2), then a long part of length ℓ0, then
a part of length 𝑛0, and then another long part of length ℓ0. We
ensure that any of the long parts is already sufficient in itself to
guarantee suboptimality if we do not place all pebbles in the gadget,
i.e. ł0

2(𝑟−1) is already higher than the cost of any reasonable solution
that pebbles each gadget in one go. Altogether, ℓ = 2ℓ0+𝑛0+2(𝑟 −2).

We then use the 𝑛0 nodes in the middle of the chain of 𝐻1 (𝑢1)
to place a distinct node into the set 𝐻2 (𝑢2) of any node 𝑢2 that is
incident to 𝑢1 in 𝐺0. Since the degree of 𝑢1 in 𝐺0 is at most 𝑛0, we
can indeed include a separate node of the chain for each such 𝑢2.
Note that due to the length of the chain, we need to have all red
pebbles on the gadget both before and after the computation of
these 𝑛0 middle nodes, otherwise the cost becomes too high. In fact,
we can assume that in a reasonable strategy, when we compute such
a middle node, we save it immediately to slow memory, and only
load it back later when visiting the corresponding gadget 𝐻2 (𝑢2).
This only adds an I/O cost of 2 for the given middle node. On the
other hand, if we use the middle node to partially compute any
other nodes in 𝐻2 (𝑢2), then we also need to save these values and
load them later when visiting 𝐻2 (𝑢2), which again costs at least 2.

As such, any reasonable pebbling visits each gadget at most
once, computes the entire chain, and saves (and later loads) the
appropriate middle nodes. In this case, it is easy to see that the
gadgets indeed establish the desired dependence relations: for any
edge (𝑢1, 𝑢2) in 𝐺0, if a node in the chain of 𝐻1 (𝑢1) is included in
𝐻2 (𝑢2), and a node in the chain of 𝐻1 (𝑢2) is included in 𝐻2 (𝑢1),
then we must visit 𝐻1 (𝑢1) before 𝐻2 (𝑢2) and we must visit 𝐻1 (𝑢2)
before𝐻2 (𝑢1) so at most of the the pairs𝐻1 (𝑢1),𝐻2 (𝑢1) and𝐻1 (𝑢2),
𝐻2 (𝑢2) can be visited consecutively. For a simpler analysis, we can
assume that we also add a similar dependence from 𝐻1 (𝑢1) to
𝐻2 (𝑢1), to ensure that 𝐻1 (𝑢1) is visited before 𝐻2 (𝑢1).

Note that each group 𝐻1 (𝑢0) and 𝐻2 (𝑢0) needs to have at least
a given size in order to ensure that we can pick distinct nodes for
the distinct roles in each group. In particular, we need 3𝑛0 anchor
nodes, as discussed before. We need 𝑏 nodes that will be merged

between 𝐻1 (𝑢0) and 𝐻2 (𝑢0). In 𝐻2 (𝑢0), we need a specific node
from the chain of 𝐻2 (𝑢1) for each node 𝑢1 in 𝐺0 that is incident
to 𝑢0, which can be up to 𝑛0. We also need 3 further nodes for
the nodes in 𝑍1 or 𝑍2. Altogether, this leads to a choice of 𝑟 − 2 =
|𝐻1 (𝑢0) | = |𝐻2 (𝑢0) | = 𝑏 + 4𝑛0 + 3.

As for the rest of our parameters, we can select 𝑏 as a large
constant; it has to be larger than |𝑍1 | = |𝑍2 | = 3 in order to ensure
that the I/O gain from the consecutive visitation of a gadget-pair
is still much larger than the worst-case cost of computing𝑤 , and
hence regardless of𝑤 ’s role, the optimal pebbling will still always
follow a maximum independent set. This defines 𝑟 = 𝑏 + 4𝑛0 + 5 as
discussed above. Finally, if we pebble each gadget simultaneously,
but cannot visit any pair consecutively, we get a non-trivial I/O cost
of at most 𝑛0 · 𝑏 for reloading the 𝑏 merged nodes in the gadget-
pairs, 2 · |𝐸0 | for having to reload the middle nodes in the chains
(where |𝐸0 | is the number of edges in 𝐺0), plus 6 for reloading 𝑍1
and 𝑍2. We need to ensure that ℓ0

2(𝑟−2) is larger than the sum of
this. Furthermore, we add another 𝑟 − 1 here, to ensure that even
the non-trivial I/O cost incurred by the gadget is larger than this
sum. Thus altogether, we want to guarantee

ℓ0
2(𝑟 − 2) − (𝑟 − 1) > 𝑛0 · 𝑏 + 2 · |𝐸0 | + 6 ,

which can be satisfied with a choice of ℓ0 = Θ(𝑟 · (𝑛0 + |𝐸0 | + 𝑟 )) =
Θ(𝑛20 + 𝑛0 · |𝐸0 |). Recall that then ℓ = 2ℓ0 + 𝑛0 + 2(𝑟 − 2), which is
in the same magnitude.

Note that with this choice of parameters, the size of the whole
construction is still polynomial in the size of the original graph 𝐺0.

A.5 Proof of Theorem 7.1
We then discuss further details for the proof of Theorem 7.1. Recall
that in order to adapt this proof, we only add a given number
of auxiliary levels before each original level in the construction
of [3]. The remaining part of the proof (the towers formed from the
gadgets, and the edges connecting them) is unchanged.

Recall that a level gadget is a chain (𝑢1, ..., 𝑢ℓ ) with (𝑢𝑖 , 𝑢𝑖+1) ∈𝐸
for 𝑖 ∈ [ℓ−1]. If the level (𝑢1, ..., 𝑢ℓ ) is followed by the level (𝑣1, ..., 𝑣ℓ ′ ),
then (𝑢𝑖 , 𝑣𝑖 ) ∈𝐸 for 𝑖 ∈ [min(ℓ, ℓ′)]. If ℓ > ℓ′, then also (𝑢𝑖 , 𝑣ℓ ′ ) ∈𝐸 for
ℓ′ < 𝑖 ≤ ℓ . For an illustration of the gadgets, see Figure 3 in the full
version of [3]. Our auxiliary levels are simply extra levels between
the original levels of the construction, which always have the size
of the next original level that follows. Adding these new levels
does not affect the behavior in RBP at all: we can still transition
between the original levels in the same way as before, just with
more intermediate steps. As long as the total number of auxiliary
levels is polynomial in the DAG size 𝑛, whole reduction remains
polynomial.

In contrast to RBP, if have have a level (𝑢1, ..., 𝑢ℓ ) in PRBP, it
is possible that the red pebble from e.g. the node 𝑢1 is already
removed before we place a red pebble on 𝑢ℓ , and as such, it is not
easy to show that an optimal solution will always pebble a level
in a consecutive fashion. Thus in the analysis for PRBP, we will
instead say that our strategy is on a given original level (𝑢1, ..., 𝑢ℓ )
of a tower if we already placed a red pebble on all of 𝑢1, ..., 𝑢ℓ at
least once, but the same does not hold for the following level.

With this modified definition, and adding at least 1 auxiliary level
before each original level, we can already carry over the precedence
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relations established between different towers to PRBP. Whenever
a level 𝐿 in a tower had edges towards some level 𝐿′ of another
tower, we now draw those edges to the corresponding nodes of the
auxiliary level 𝐿′𝑎 before 𝐿′. While we can now do partial computa-
tions to already place red pebbles on 𝐿′𝑎 before having reached 𝐿,
we can only place red pebbles on the nodes of 𝐿′ once the incoming
edges of a node below in 𝐿′𝑎 are already all marked, and hence we
can only reach level 𝐿′ after reaching level 𝐿 in the other tower.

Recall that in general, if 𝐿 = (𝑢1, ..., 𝑢ℓ ) and 𝐿′ = (𝑣1, ..., 𝑣ℓ ′ ) are
two consecutive levels in a tower, we also needs to ensure that if
we are on level 𝐿, then we need to have at least ℓ pebbles in this
tower also in PRBP. This holds easily when ℓ′ ≥ ℓ : for all indices
𝑖 ∈ [ℓ], before reaching 𝐿′, a valid pebbling always has a pebble on
the 𝑖-th node of either 𝐿, 𝐿′, an auxiliary level in-between, or the
level after 𝐿′ (let us add an auxiliary level on the top of each tower
to ensure that this argument also easily extends to the last levels).
However, for ℓ′ < ℓ , we need our extra modification here: we add
(ℓ−ℓ′+2) auxiliary levels before 𝐿′ (with incoming edges from other
towers still going to the lowermost one), and draw an edge from all
of 𝑢ℓ ′+1, ..., 𝑢ℓ to the last node of each of these auxiliary levels. This
ensures that partially computing the last nodes of each auxiliary
level between𝐿 and𝐿′ (and hence possibly removing the red pebbles
from 𝑢ℓ ′+1, ..., 𝑢ℓ before satisfying the external dependencies of 𝐿′)
offers no advantage, since these last nodes together lock downmore
than (ℓ−ℓ′) pebbles. For the sake of precision, we can change our
definition for these levels, and say that we are already on level
𝐿′ when having placed a red pebble on all nodes of the second
auxiliary level; then once again, any pebbling has at least ℓ pebbles
in the given tower while on level 𝐿.

As another technical detail, note that the last level 𝐿 of the main
tower has incoming edges from the last level 𝐿′ in any other tower.
To ensure that we cannot save pebbles by partially computing the
values of 𝐿, we add a separate auxiliary level of 𝐿 for the incoming
edges of each such 𝐿′. With 𝐿 being larger than any of the 𝐿′, this
means that before reaching the penultimate level in the main tower,
partially computing the auxiliary levels of 𝐿 (to free up pebbles from
𝐿′) only locks down more pebbles, and thus offers no advantage.

B OTHER MODEL VARIANTS
We discuss a few more details on introducing partial computations
to some other variants of RBP that appear in the literature.

B.1 Re-computations
An RBP variant with re-computation can be obtained by simply
removing the one-shot restriction, i.e. allowing a node 𝑣 to be
computed any number of times. This can be a beneficial strategy in
many DAGs; if e.g. the inputs of a node 𝑣 are anyway kept in fast
memory for some reason, and 𝑣 is needed later in our computation,
then instead of saving 𝑣 to slow memory and loading it back later
(I/O cost of 2), we can simply delete the red pebble from 𝑣 and later
compute 𝑣 again from its inputs at no I/O cost.

This variant also has the undesired effect that the optimal peb-
bling sequence might grow super-polinomially long because we
repeatedly delete and re-compute nodes at no cost, making the
problem PSPACE-complete [7]. Due to this, many works instead
focus on an RBP variant that is is NP, such as the one-shot model.

Note that introducing re-computation into PRBP is a delicate
matter, since the nodes are computed in multiple steps. One simple
solution is to only allow re-computing the value of the node from
scratch, i.e. we again need to aggregate all the inputs of 𝑣 . This
model extension is relatively easy to define; we briefly discuss its
properties below. Alternatively, a more advance model could allow
to only repeat some of the partial compute steps that 𝑣 consists of,
and this can indeed be beneficial in some cases. In particular, it can
happen that after aggregating most of the inputs into a node 𝑣 , we
are forced to save the almost-final value of 𝑣 into slow memory
and load it later. Assume that at this point, 𝑣 has a final unmarked
in-edge (𝑢, 𝑣), and two outputs𝑤1,𝑤2. Furthermore, assume that
between the computation of𝑤1 and𝑤2, we are forced to remove
the red pebble from 𝑣 again, but the red pebble on 𝑢 is still kept.
In the original PRBP, we can mark (𝑢, 𝑣), then mark (𝑣,𝑤1), but
then we have to save the final value of 𝑣 to slow memory and load
it back later, at a cost of 2. However, if we are allowed instead to
keep the unfinished value of 𝑣 in slow memory, and re-compute
only the edge (𝑢, 𝑣), then we could instead mark (𝑢, 𝑣) and (𝑣,𝑤1),
delete the red pebble from 𝑣 , and later when computing𝑤2, simply
load the almost-finalized value of 𝑣 from slow memory again, and
aggregate𝑢 into 𝑣 again, at a cost of only 1. Executing this sequence
of steps is also possible in practice, and hence a PRBP extension
could also decide to follow this approach, and allow to re-compute
only specific parts of 𝑣 . We leave it to future work to analyze the
properties of such a model.

We briefly discuss a PRBP extension where we are can only
re-compute a node from scratch. For this, we add a new operation:

5) clear: given a node 𝑣 that is neither a source nor a sink, remove
all pebbles from 𝑣 and unmark all the in-edges of 𝑣 .

We could also require here that all in-edges of 𝑣 are already marked,
since otherwise any partial compute step on 𝑣 before the clearing
was useless, and hence the pebbling could be simplified. Similarly,
the restriction that 𝑣 is neither a source or a sink may be removed.

TheDAG in Figure 1 provides a nice examplewhere re-computation
allows us to save I/O operations in RBP. In particular, with 𝑟 = 4
here, we can load 𝑢0, compute 𝑢1,𝑤1 and𝑤2, then delete 𝑢1, com-
pute𝑤3, then re-compute 𝑢1, compute 𝑢2, and finish the pebbling
as in the original model. This results in OPT𝑅𝐵𝑃 = 2.

To adapt this example to RBP with re-computation, we can add
another layer of two nodes 𝑧1, 𝑧2 after 𝑢0, i.e. 𝑢0 now has edges to
only 𝑧1, 𝑧2, while 𝑧1, 𝑧2 both have edges to 𝑢1, 𝑢2. Intuitively, this
ensures that we need to keep two red pebbles in fast memory in
order to re-compute 𝑢1, which is not possible while using 3 red
pebbles to compute𝑤3. The same approach can be used to adapt
Proposition 4.7: our modified gadgets now span from 𝑧1, 𝑧2 until 𝑣1,
𝑣2. Note that PRBP was incurring only the trivial I/O cost anyway,
so it remains unaffected; this settles Propositions 4.2 and 4.7.

In contrast to this, some of our other claims carry over to this
extended model without changes. In Proposition 4.3, the internal
nodes all have outdegree 1, so re-computation does not decrease the
cost here in either RBP or PRBP. With source nodes not being re-
computable, the optimal pebbling strategies in the DAGs of Figure 2
also remain unchanged. With the construction of Theorem 4.8
consisting of pebble collection gadgets, re-computation also does
not affect the optimal cost in this case.We note here that the original
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works of [3, 17] consider yet another RBP variant where source
nodes do not have to be loaded, but can be computed freely anytime.
Due to this, their work adds further gadgets in front of the sources
to discourage the re-computation of these values. Since we work
with the original RBP variant of [12] where source nodes are not
computed, this modification is not required in our case.

Regarding 𝑆-partitions, Lemma 5.4 of course holds for PRBP with
re-computation, but the rest of our observations are more challeng-
ing to adapt. In particular, when converting a pebbling strategy to a
partition, we simply assigned the nodes/edges into the subsequence
where they were computed. The same assignment rule becomes
more technical when values can be computed multiple times. While
the base ideas of adapting these concepts to re-computation have
already been outlined for standard 𝑆-partitions in [12], we leave it
to future work to present and analyze the adaptation of the tools
and proofs in Section 6 to re-computations.

Similarly, proof construction for Theorem 7.1 in [3] was only
designed for one-shot RBP, so establishing inapproximabilty results
for PRBP with re-computation is again a non-trivial task.

B.2 Sliding pebbles
In RBP with sliding pebbles, we also allow another kind of compute
step: if all inputs of a node 𝑣 have a red pebble, then we can move
the red pebble from one of the inputs to 𝑣 . This RBP model was
rarely analyzed on its own, but it is often mentioned as because
many results for the so-called black pebble game are developed
in a variant that allows sliding pebbles, and these can often be
transferred to RBP if we allow sliding.

One motivation for this RBP variant is to capture in-place com-
putations: intuitively, we can think of sliding as the node 𝑣 being
computed in the same memory location that was storing one of
its inputs before. Due to this, combining this version with partial
computations is less interesting: in PRBP, the partial compute step
essentially already assumes that the next value is combined with
the aggregated value in an in-place way. The only exception to
this is when the very first input is aggregated into 𝑣 , which would
only require 1 red pebble in an in-place interpretation, but needs 2
red pebbles simultaneously in PRBP; however, this does not play a
major role for most DAGs.

An interesting question, however, is how RBP compares to PRBP
if we allow sliding pebbles in RBP, or on a more abstract level,
how much of the cost difference between RBP and PRBP is due to
the in-place nature of computations, and how much is due to the
ability to compute nodes partially? We briefly revisit our claims
in Section 4 to show that in-place computation plays a minor role
only, and instead partial computations are the relevant factor.

Note that the DAG in Figure 1 is actually an example where
sliding pebbles allow us to also have OPT𝑅𝐵𝑃 = 2, by sliding a red
pebble from𝑤1 to𝑤3 when computing𝑤3. However, the example
can be easily adjusted to this model version by adding a third node
𝑤0 which has an incoming edge from 𝑢1 and an outgoing edge to
𝑤3. In this new graph, even the sliding model needs 3 red pebbles
simultaneously for pebbling 𝑤3, so our original arguments hold
again; on the other hand, PRBP can still pebble the DAG wihtout
any extra I/O. The same modification also covers Proposition 4.7.

The proof of Proposition 4.3 holds again if we restrict ourselves
to 𝑟 ≥ 2𝑚− 1. In the zipper gadget and pebble collection gadget, we
obtain the same example behaviors as before if we choose 𝑟 = 𝑑 + 1
instead. Adapting the pebble collection gadget also covers the case
of Theorem 4.8 if 𝑟 is decreased by 1.

The only significant difference is the case of binary trees, where
sliding pebbles actually also allow us to compute each 3-node sub-
tree with only 2 red pebbles, and hence the optimal number of
non-trivial I/O steps in RBP also becomes 2𝑑−1 − 2, similarly to
PRBP. As such, Proposition 4.5 does not carry over to the case when
RBP allows sliding pebbles. Note that this is only the case for binary
trees; in e.g. a ternary tree, a 4-node subtree can still be computed
with 2 red pebbles (without extra I/O) in PRBP, but already requires
3 red pebbles in RBP with pebble sliding. As such, for 𝑘-ary trees
with 𝑘 ≥ 3, we again have OPT𝑃𝑅𝐵𝑃 < OPT𝑅𝐵𝑃 .

B.3 Computation costs
In RBP with computation costs, we assume that compute steps also
incur a cost of some 𝜀 > 0 [2, 3, 17]. This parameter 𝜀 is typically
considered a constant, and much smaller than the cost 1 of the
I/O operations. This model guarantees that OPT𝑅𝐵𝑃 ≥ 𝜀 · 𝑛, which
means that our claims considering the ratio of two costs, such
as the multiplicative part of Theorem 7.1 or the linear factor in
Proposition 4.7, do not carry over to this variant.

However, there is also a fundamental modeling question when
trying to compare OPT𝑅𝐵𝑃 and OPT𝑃𝑅𝐵𝑃 in this model, namely, how
compute costs are adapted to PRBP. If we simply assign a cost of 𝜀
to every partial compute step, then (in the one-shot model) this will
add up to a cost of 𝜀 · |𝐸 | in PRBP, in contrast to 𝜀 · 𝑛 in RBP, and
hence the two costs are not directly comparable anymore. Another
option is to assign a cost of 𝜀/deg𝑖𝑛 (𝑣) to each partial compute step
on an edge (𝑢, 𝑣), where deg𝑖𝑛 (𝑣) is the indegree of 𝑣 . This leaves
the total costs identical, but it means that different partial compute
steps have different weights, which might not be desired.

Note that in general, this variant leads to a different model inter-
pretation where we are not only trying to capture I/O costs, but the
‘total’ cost of executing the computation. This has limited relevance
in one-shot RBP where the total computation cost is always 𝜀 ·𝑛, but
it is very natural in other settings, e.g. with re-computation if we
want to understand the trade-off between the extra compute steps
and the I/O cost saved, or in parallel versions of RBP [3] where it
offers a natural way to motivate a balance between distributing
workload and minimizing communication costs.

B.4 No deletion
Another RBP variant assumes that red pebbles can never be deleted,
but they instead get replaced by the blue pebble when saved to slow
memory [7, 17]. This extension has less practical relevance, and is
instead rather a tool to ensure that the optimal pebbling sequence
has polynomial length (as opposed to RBP with re-computation,
where this is not guaranteed). PRBP could be adapted to this setting
by changing the deletion rule such that a dark red pebble may
never be removed from a node by any other means than saving it.
Similarly to RBP, this ensures that OPT𝑃𝑅𝐵𝑃 ≥ 𝑛 − 𝑟 in any DAG,
since all nodes are saved at least once to slow memory, except for
possibly the 𝑟 nodes that have a red pebble in the final state.
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