
Efficient Multi-Processor Scheduling in Increasingly Realistic
Models

Pál András Papp

pal.andras.papp@huawei.com

Computing Systems Lab

Huawei Zurich Research Center

Zurich, Switzerland

Georg Anegg

georg.anegg@huawei.com

Computing Systems Lab

Huawei Zurich Research Center

Zurich, Switzerland

Aikaterini Karanasiou

aikaterini.karanasiou@huawei.com

Computing Systems Lab

Huawei Zurich Research Center

Zurich, Switzerland

Albert-Jan N. Yzelman

albertjan.yzelman@huawei.com

Computing Systems Lab

Huawei Zurich Research Center

Zurich, Switzerland

ABSTRACT
We study the problem of efficiently scheduling a computational

DAG on multiple processors. The majority of previous works have

developed and compared algorithms for this problem in relatively

simple models; in contrast to this, we analyze this problem in a

more realistic model that captures many real-world aspects, such as

communication costs, synchronization costs, and the hierarchical

structure of modern processing architectures. For this we extend the

well-established BSPmodel of parallel computing with non-uniform

memory access (NUMA) effects. We then develop a range of new

scheduling algorithms to minimize the scheduling cost in this more

complex setting: several initialization heuristics, a hill-climbing

local search method, and several approaches that formulate (and

solve) the scheduling problem as an Integer Linear Program (ILP).

We combine these algorithms into a single framework, and conduct

experiments on a diverse set of real-world computational DAGs to

show that the resulting scheduler significantly outperforms both

academic and practical baselines. In particular, even without NUMA

effects, our scheduler finds solutions of 24% − 44% smaller cost on

average than the baselines, and in case of NUMA effects, it achieves

up to a factor 2.5× improvement compared to the baselines. Finally,

we also develop a multilevel scheduling algorithm, which provides

up to almost a factor 5× improvement in the special case when the

problem is dominated by very high communication costs.

CCS CONCEPTS
• Theory of computation→ Scheduling algorithms; Parallel
computing models; Integer programming.

KEYWORDS
DAG scheduling; BSP model; Integer Linear Programming; Multi-

level scheduling

©Pál András Papp, Georg Anegg, Aikaterini Karanasiou and Albert-Jan N. Yzelman,

2024. This is the author’s full version of the work, posted here for personal use. Not

for redistribution. The definitive version (extended abstract) was published in the

36th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2024),

https://doi.org/10.1145/3626183.3659972.

1 INTRODUCTION
The optimal scheduling of complex computational workloads on

multiple processors has been extensively studied since the early

days of computing. As the different subtasks in a computation usu-

ally have precedence constraints between them (one subtask can

only be started after another one has been finished), the computa-

tions in these applications are often modeled as Directed Acyclic

Graphs (DAGs), with the directed edges representing these depen-

dencies.

Besides the structure of the DAG representing the computation,

the other main ingredient of a scheduling problem is the machine

model assumed. DAG scheduling has been studied in a very wide

range of models in the past decades, differing in e.g. the numbers

and types of processors, the modelling of communication costs, or

other properties of the system such as synchronization or preemp-

tion. However, for arbitrary computational workloads (i.e. general

DAGs), finding an optimal or close-to-optimal schedule is already

very challenging in the simplest possible models, e.g. with uniform

processors and very simple models of communication (or even no

communication costs at all).

Due to this, previous research has mostly focused on variants

of the scheduling problem where either the set of input DAGs or

the scheduling model is heavily restricted or simplified. Theoretical

work has almost exclusively studied very restricted models, where

it is still manageable to analyze approximation algorithms or hard-

ness results; however, these models are usually far from realistic.

Experimental research has developed several scheduling heuristics

based on natural ideas such as locality, that generally deliver good

empirical results in simpler models; however, these heuristics are

completely impervious to the parameters of real-world systems,

and hence it is unclear how their performance carries over to more

complex models. On the practical side, the parallel computing com-

munity has developed more sophisticated models, such as the Bulk

Synchronous Parallel (BSP) or the LogP model, that capture many

aspects of a real-world system; however, due to their complexity,

these models have mostly been used for developing and analyzing

parallel implementations of concrete computations (i.e. specific

DAGs), instead of general computational tasks. As such, while each

of these directions offers valuable insight, we still lack a proper

1

ar
X

iv
:2

40
4.

15
24

6v
1

 [
cs

.D
C

]
 2

3
A

pr
 2

02
4

https://orcid.org/0009-0005-6667-802X
https://orcid.org/0000-0002-5730-5812
https://orcid.org/0000-0002-6152-863X
https://orcid.org/0000-0001-8842-3689

Pál András Papp, Georg Anegg, Aikaterini Karanasiou, and Albert-Jan N. Yzelman

understanding of how to devise efficient scheduling algorithms for

arbitrary DAGs in a realistic machine model.

Our goal in this paper is to develop and analyze scheduling al-

gorithms for this more general case: we consider the scheduling

problem for general DAGs, in a model that captures many of the

most important aspects of real computations. In particular, we begin

from the BSP model which already accounts for communication

volume and latency, and we extend this with a simple model of

non-uniform memory access (NUMA) effects, which also have a

defining role in modern manycore architectures. We then develop

a framework of scheduling algorithms in this more realistic model,

and compare this against several state-of-the-art scheduling algo-

rithms from previous research and from applications, on a set of

DAGs representing a wide range of actual computational tasks.

Our first contribution in the paper is a database of computational

DAGs, which offers a diverse benchmark to evaluate different sched-

uling algorithms in the future. Then in terms of algorithms, we

first present some heuristic methods to develop initial schedules

(similar to heuristics from previous works, but tuned towards our

realistic model). We then develop more advanced scheduling algo-

rithms that take a different approach: instead of making heuristic

decisions based on e.g. locality, they consider the actual cost of

each solution in our complex model (with all its parameters), and

directly optimize for minimizing this cost. In particular, we develop

(i) a local search algorithm that iteratively improves a solution by

making small modifications to a schedule as long as this decreases

its total cost, and (ii) several different ways to model the problem

as an Integer Linear Program (ILP), and use an ILP solver to find

(sub)schedules of small cost. Finally, we also present a multilevel

scheduling approach that is superior in the case when our schedul-

ing problem is substantially dominated by communication costs.

Unsurprisingly, our more complex algorithms require notably

more running time than lightweight heuristics, and hence their

study is not viable on very large graphs. On the other hand, in

the domain where they are applicable, our results show that they

significantly outperform the baseline heuristics. In particular, even

without NUMA effects, our scheduler achieves a cost reduction of

32%–51% compared to a simpler, and 13%–40% compared to a more

sophisticated baseline, depending on the number of processors

and the parameters of the model, on DAGs up to 10 000 nodes.

In case of NUMA effects, the improvement is even larger: 48%–

71% to the simpler, and 27%–58% to the stronger baseline, or with

the multilevel algorithm, even up to 79% (i.e. almost a factor 5×
improvement) to the stronger baseline in some cases. This shows

that in realistic scheduling models, our approach can indeed return

drastically better solutions than the baseline algorithms.

2 RELATEDWORK
Different variants of the DAG scheduling problem have been stud-

ied thoroughly since the 1960s. In the first decades, research has

mostly focused on very simple settings that either do not consider

communication costs (motivated by the PRAM model), or only cap-

ture it as a fixed delay, independently of communication volume.

In terms of theoretical results, scheduling is known to be already

NP-hard in these simple models, and on special subclasses of DAGs

[12, 18, 30, 35, 38]. On the other hand, the topic of developing ap-

proximation algorithms in these models is still extensively studied

in recent years [16, 20–22].

On the experimental side, researchers have developed a range

of different scheduling heuristics, and evaluated their performance

empirically. Recent surveys [41] have classified these heuristics

into two groups: list-based [2, 13, 26, 32, 36] and cluster-based

[14, 17, 42] methods. To our knowledge, there is very little previous

work on evaluating these heuristics in more realistic models (with

the exception of [27], which is discussed separately below).

On the more practical side, BSP is one of the prominent models of

parallel computing, and has been studied extensively from various

perspectives [4, 23, 34, 39, 40]. The BSP model accounts for several

important real-world aspects such as communication volume and

latency, but it conveniently captures all these in a relatively simple

cost function; as such, it is also used in various applications via

the BSPlib library and its implementations [11, 43, 44]. However,

most of the previous works on BSP (and on similar models with

more parameters, such as LogP [6]) focus on the scheduling of

specific DAGs that describe a concrete computation [8, 24, 25].

One exception to this is a recent theoretical work that studies the

computational complexity of BSP scheduling for given subclasses

of DAGs, and also presents a naive ILP formulation to capture the

BSP scheduling problem on general DAGs [28].

The impact of NUMA in an algorithmic context has also been

studied before on e.g. different variants of the (hyper)graph parti-

tioning problem [9, 29, 33].

Numerous other variants of the scheduling problem have also

been studied extensively, e.g. with separate deadlines for nodes or

with node duplication [3, 19].

The closest result our work is the work of Özkaya et al. [27],

who conduct a similar experimental study with the same goal of

analyzing sophisticated scheduling algorithms in a more realistic

model. Our work differs from their approach in several aspects.

Firstly, the work of [27] introduces a custom model (named duplex

single-port model) that only extends classical scheduling models

with communication volume; in contrast to this, our work considers

BSP, a well-established parallel computing model in both theory

and practice which also captures further aspects such as latency,

and we further extend this with NUMA effects. Moreover, while the

main idea of [27] is to extend modern list schedulers with a acyclic

partitioner, we take an entirely different approach, and focus on

methods that aim to directly minimize the cost function (such as

local search and ILP representations).

3 PROBLEM DEFINITION AND BACKGROUND
3.1 Preliminaries
We assume that our computation is represented by Directed Acyclic

Graph (DAG)𝐺 (𝑉 , 𝐸). The nodes of the DAG correspond to subtasks

or operations we need to execute, and the directed edges correspond

to dependencies between these operations: an edge from node 𝑢

to node 𝑣 implies that the execution of 𝑢 has to be finished before

the execution of 𝑣 begins, because the output of 𝑢 is required as an

input for 𝑣 . We denote the number of nodes by 𝑛.

Besides the structure of the DAG, our computation is described

by two parameters for each node 𝑣 : the computation weight𝑤 (𝑣)
2

Efficient Multi-Processor Scheduling in Increasingly Realistic Models

(also called work weight) is the amount of time required to execute

operation 𝑣 on a processor, and the communication weight 𝑐 (𝑣) is
the amount of communication required to send the output of 𝑣 to

another processor (e.g. its size in bytes). These weights can differ

significantly between the different nodes, so they are both crucial

to include in our model. Note that we consider the communication

weight 𝑐 (𝑣) to be a property of each node of the DAG (in contrast

to e.g. [27], where it is assigned to the edges). For simplicity, we

assume that node weights are integers.

3.2 The BSP model
The BSP model assumes that the computational steps are organized

into so-called supersteps. Each superstep consists of the following

two phases:

(1) Computation phase: each processor can execute an arbitrary
amount of computation, but no communication is allowed.

(2) Communication phase: processors can communicate any

number of values to each other, but no computation hap-

pens.

Intuitively, supersteps correspond to larger batches of computa-

tions that are executed consecutively on a single processor, without

any interruption for communication. Dividing the computations

into such batches is often beneficial in practice, since the communi-

cation often comes with a significant overhead that is independent

of the number of communicated values, due to e.g. synchronization

or network initialization.

Our computing architecture in BSP is described by three parame-

ters: the number 𝑃 of processors available, the time cost𝑔 of sending

a single unit of data between processors, and a fixed overhead cost

ℓ (called the latency) incurred by each superstep.

When applying the BSP model to DAG scheduling, our schedule

must respect the dependencies described by the edges of the DAG.

This means that a node 𝑣 can only be computed on processor 𝑝

in superstep 𝑠 if the output values from all its direct predecessors

are already present on 𝑝: that is, they were either computed on

𝑝 in an earlier (or the same) superstep, or they were sent to 𝑝 by

another processor before superstep 𝑠 . In the communication phases,

a processor 𝑝 can send the output value of any node 𝑣 if it is already

present on 𝑝 , to any other processor(s).

Formally, a BSP schedule of a DAG consists of (i) an assign-

ment of nodes to processors 𝜋 : 𝑉 → {1, . . . , 𝑃} and supersteps

𝜏 : 𝑉→N, and (ii) a communication schedule Γ, i.e. a set of 4-tuples
(𝑣, 𝑝1, 𝑝2, 𝑠), indicating that the output of node 𝑣 is sent from pro-

cessor 𝑝1 to processor 𝑝2 in the communication phase of superstep

𝑠 . A valid BSP schedule then must satisfy the conditions discussed

above, i.e.

• For each edge (𝑢, 𝑣) of 𝐺 , in case of 𝜋 (𝑢) = 𝜋 (𝑣), we must

have 𝜏 (𝑢) ≤ 𝜏 (𝑣), and in case of 𝜋 (𝑢) ≠ 𝜋 (𝑣), we must

have an entry (𝑢, 𝑝1, 𝜋 (𝑣), 𝑠) ∈ Γ for some processor 𝑝1 and

some superstep 𝑠 < 𝜏 (𝑣).

• For each (𝑣, 𝑝1, 𝑝2, 𝑠) ∈ Γ, we must either have 𝜋 (𝑣) = 𝑝1
and 𝜏 (𝑣) ≤ 𝑠 , or we must have another (𝑣, 𝑝′, 𝑝1, 𝑠′) ∈ Γ
with 𝑠′ < 𝑠 .

pr
oc

.1
pr

oc
.2

computation communication

superstep 1

computation

superstep 2

Figure 1: Example BSP scheduling of a DAG.

An example for a BSP scheduling of a DAG is illustrated in Figure

1. In the computation phase, processors 1 and 2 execute 4 and 5

operations (nodes), respectively; then in the communication phase,

processor 1 needs to send one value to processor 2, while processor

2 needs to send two values to processor 1 (to make these available

on the given processors for superstep 2). After this, the computation

phase of superstep 2 can begin.

3.3 Cost in BSP
Another advantage of BSP is that in contrast to classical models,

BSP assigns a simple cost metric to each superstep, and the total

time required (i.e. total cost of a schedule) can be obtained by simply

summing up the costs of the individual supersteps.

In the computation phase of each superstep, the subtasks as-

signed to each processor are executed by the processors simulta-

neously; as such, the cost of a computation phase is defined as the

maximum work assigned to any processor in the superstep, i.e.

𝐶𝑤𝑜𝑟𝑘 (𝑠) = max

𝑝∈{1,...,𝑃 }

∑︁
𝜋 (𝑣)=𝑝
𝜏 (𝑣)=𝑠

𝑤 (𝑣) .

On the other hand, communication costs are measured by the so-

called ℎ-relation metric, where the cost of a communication phase

is determined by the maximum amount of data sent or received by

any processor. That is, the send cost and receive cost, respectively,

of processor 𝑝 in superstep 𝑠 is

𝐶𝑠𝑒𝑛𝑑 (𝑝, 𝑠) =
∑︁

(𝑣,𝑝1,𝑝2,𝑠1) ∈Γ
𝑝1=𝑝
𝑠1=𝑠

𝑐 (𝑣) ,

𝐶𝑟𝑒𝑐 (𝑝, 𝑠) =
∑︁

(𝑣,𝑝1,𝑝2,𝑠1) ∈Γ
𝑝2=𝑝
𝑠1=𝑠

𝑐 (𝑣) ,

and the communication cost of superstep 𝑠 is

𝐶𝑐𝑜𝑚𝑚 (𝑠) = max

𝑝∈{1,...,𝑃 }
max (𝐶𝑠𝑒𝑛𝑑 (𝑝, 𝑠), 𝐶𝑟𝑒𝑐 (𝑝, 𝑠)) .

The total cost of superstep 𝑠 is then the sum of the work, communi-

cation, and latency costs, defined as

𝐶 (𝑠) = 𝐶𝑤𝑜𝑟𝑘 (𝑠) + 𝑔 ·𝐶𝑐𝑜𝑚𝑚 (𝑠) + ℓ ,
and the cost of the whole schedule is obtained by simply summing

up 𝐶 (𝑠) for all the supersteps.
3

Pál András Papp, Georg Anegg, Aikaterini Karanasiou, and Albert-Jan N. Yzelman

For more details on the properties and the different variants of

this model, we refer the reader to [28].

3.4 NUMA effects
BSP already captures communications more realistically than most

classical models. However, one significant drawback of BSP is that

it assumes a uniform communication cost between any pair of

processors. In contrast to this, today’s computing architectures very

often exhibit a hierarchical structure: each processor has multiple

cores, each machine has multiple processors, and maybe multiple

machines are connected over a network. This hierarchical structure

results in a non-uniform memory access setting, where the cost

of sending a piece of data heavily depends on the concrete pair

of processing units that communicate: sending a value between

two cores on the same processor is relatively low, whereas sending

the same data over the highest level of the hierarchy (e.g. over the

network) is drastically higher.

This asymmetry between the processors is often a defining aspect

of the scheduling problem in practice. Due to this, we also extend

the BSP model which such NUMA effects, and further analyze

the impact of this in our experiments. The BSP definition above

is straightforward to extend to this setting: if the cost 𝜆𝑝1,𝑝2 of

communicating a single unit of data is known for each pair of

processors (𝑝1, 𝑝2), then we can simply add 𝜆𝑝1,𝑝2 as a further

factor in the formulas defining𝐶𝑠𝑒𝑛𝑑 (𝑝, 𝑠) and𝐶𝑟𝑒𝑐 (𝑝, 𝑠) above. The
values 𝜆𝑝1,𝑝2 then become further input parameters of the problem;

we can specify them either directly for each pair of processors,

or implicitly through a hierarchy. Note that the default case of

uniform communication costs corresponds to a choice of 𝜆𝑝1,𝑝2 = 1

for 𝑝1 ≠ 𝑝2, and 𝜆𝑝1,𝑝2 = 0 for 𝑝1 = 𝑝2.

3.5 Problem definition
Altogether, the input of our problem is (i) a DAG with node weights

𝑤 (𝑣) and 𝑐 (𝑣), and (ii) a machine description with the parameters

𝑃 , 𝑔 and ℓ , and possibly 𝜆𝑝1,𝑝2 for all pairs of processors 𝑝1, 𝑝2. Our

goal is to find the best valid schedule in the BSP model, minimizing

the total cost.

We sometimes also discuss the communication scheduling sub-

problem of optimizing Γ when 𝜋 and 𝜏 are already fixed, i.e. sorting

the necessary communication steps into the given communication

phases while minimizing the total cost of ℎ-relations. With the

assignment to processors and supersteps fixed, this subproblem has

a much smaller degree of freedom; its theoretical complexity was

studied separately in [28].

4 SCHEDULING ALGORITHMS
We now describe our scheduling algorithms in the BSP model. Due

to space constraints, we only outline the main ideas behind each

algorithm; we discuss them in more detail in Appendix A. The

pipeline combining the algorithms is discussed later in Section 6.

4.1 Baselines
In order to evaluate our approach, we use the following baseline

schedulers for comparison:

• Cilk: this is a simple and yet efficient scheduling heuristic

[5]; different variants of the same work-stealing approach

are widely used in many of today’s prominent parallel pro-

gramming libraries and frameworks. While Cilk was origi-

nally not defined on DAGs, it is easy to adapt to this case.

Intuitively, Cilk maintains a stack of ready tasks for each

processor to work on, and if a processor is idle (its stack is

empty), it “steals” a subtask from the bottom of a (randomly

chosen) other processor’s stack. We use Cilk to represent

the baseline from the practical/application side.

• BL-EST and ETF: recent comparison studies have found that

the best scheduling algorithms are list-based schedulers

[27, 41]. In particular, the so-called BL-EST and ETF sched-

ulers were found to be most efficient in earlier experiments;

they have also already been adapted to a setting with com-

munication volume [27]. When scheduling the next node,

both BL-EST and ETF assign the node to the processor that

offers the earliest start time, based on previous assignments

and necessary communication steps. While BL-EST always

selects the next node based on the longest outgoing path,

ETF selects the node with the earliest starting time.

• HDagg: a more recent and more advanced state-of-the-art

scheduler is the HDagg algorithm of Zarebavani et. al. [46].

HDagg is presented and analyzed in [46] for the specific

purpose of speeding up SpTRSV computations; however,

it is in fact a scheduling algorithm that can be applied to

any computational DAG. Moreover, HDagg considers a very
similar scheduling model to ours, sorting the nodes of the

DAG into so-called wavefronts (essentially equivalent to

supersteps), and minimizing the amount of communication

between these wavefronts. Our experiments also show that

HDagg consistently outperforms both BL-EST and ETF. Due
to this, HDagg is a very fitting baseline for our work from

the academic side.

Besides list-based schedulers, clustering is also a prominent

method of designing state-of-the-art heuristics; however, previous

work has found that this approach is consistently outperformed by

BL-EST and ETF in models with communication cost [27].

Note that Cilk, BL-EST and ETF return a “classical” schedule

where nodes are assigned to concrete time steps; such a schedule

can be naturally adapted to BSP and organized into supersteps, by

adding a superstep barrier (closing the current computation phase)

whenever communication is required. In contrast to this, schedules

returned by HDagg are already in the appropriate format.

4.2 Initialization heuristics
In order to develop an initial BSP schedule, we use the following

heuristic methods:

• BSPg: A BSP-tailored greedy algorithm that consecutively

assigns nodes to processors when processors become idle.

Generally, we only allow assigning a node 𝑣 to processor 𝑝

if this is possible without ending the computational phase

of the current superstep 𝑠 , i.e. if we can ensure that all of

𝑣 ’s predecessors are already available on 𝑝 by superstep

4

Efficient Multi-Processor Scheduling in Increasingly Realistic Models

𝑠 (that is, they were either computed on processor 𝑝 or

in an earlier superstep). In case of multiple possible node

assignments to a processor, tie-breaking is done with a

heuristic that aims to minimize communication costs in the

future. Once we cannot assign further nodes to at least half

of the processors without a communication requirement,

the computation phase of the current superstep is closed,

and a next superstep is started.

• Source: A different greedy approach that in each step forms

a new superstep from the next layer of source nodes in

the DAG. As a preprocessing step in the beginning, the

algorithm uses a simple rule to cluster the original source

nodes of the DAG. Then in each superstep, it applies a

round-robin-based approach to assign the current source

nodes to processors, considering the nodes in a decreasing

order according to 𝑤 (𝑣) to ensure the load balancing of

work costs between processors. Besides the current source

nodes, the algorithm occasionally also adds some of their

successors to the current superstep, if this requires no extra

communication.

• ILPinit: We also apply an ILP-based initialization heuristic

that divides the nodes into smaller batches according to a

topological order, and consecutively finds a schedule for

each batch separately (given the already-selected partial

schedules on previous batches), using an ILP-formulation

of the subproblem. This approach also provides good initial

schedules, but it requires drastically more running time

than the heuristics above.

Note that the above heuristics only assign the nodes to proces-

sors and supersteps, i.e. they only define 𝜋 and 𝜏 . The required

communication steps Γ are then derived from these separately af-

terwards, simply following a lazy communication schedule where

every required value is sent in the last possible communication

phase, immediately before it is needed.

4.3 Local search algorithm
Another ingredient of our framework is a hill climbing local search

method (denoted HC) that begins from an initial solution (that is,

an already found, valid BSP schedule), and attempts to make small

improvements to this solution as long as this is possible, i.e. until

either a local minimum is found where none of the potential modi-

fication steps result in an improvement, or until a predefined time

limit is reached.

For each local improvement step, given a node 𝑣 that is currently

assigned to processor 𝑝 and superstep 𝑠 , we consider all the alterna-

tive schedules where 𝑣 is assigned to any other processor 𝑝′ ≠ 𝑝 in

superstep 𝑠 , or 𝑣 is assigned to any processor in supersteps (𝑠 − 1)
or (𝑠 + 1), with the assignments of all the other nodes unchanged.

We consider all such modification steps (for every node 𝑣), provided

that they yield a valid BSP schedule with smaller total cost.

Note this algorithm needs to be aware of the cost of the modified

solution after each potential improvement step. Recalculating this

entirely for each option would be very time-consuming; as such,

we apply a range of sophisticated data structures to store the cur-

rent schedule, and use these to efficiently query (and update) the

cost change incurred by each potential improvement step, without

having to consider nodes and supersteps that are unaffected by this

modification.

Besides this algorithm,we also apply a separate, similar hill climb-

ingmethod for the communication scheduling subproblem (denoted

HCcs), which only tries to modify the communication schedule; that

is, it checks whether any communication step (𝑣, 𝑝1, 𝑝2, 𝑠) ∈ Γ can

be replaced by some other (𝑣, 𝑝1, 𝑝2, 𝑠′) such that the schedule is

still valid and has lower cost.

4.4 ILP-based approach
As our most sophisticated approach, we represent the BSP schedul-

ing task as an ILP problem, and apply a state-of-the-art open-source

ILP solver (CBC, see [7]) to find a low-cost schedule. We use several

techniques to express (parts of) the scheduling problem as an ILP:

• ILPfull: A naive representation of BSP scheduling as an

ILP problem has already been described before in the work

of [28], but only analyzed from a theoretical perspective.

This formulation captures the entire problem as a single ILP,

and hence it requires a very high number of variables. Due

to this, even with sophisticated ILP solvers, this approach

is only feasible for very small DAGs in practice.

• ILPpart: In order to handle larger DAGs, we develop a par-

tial ILP formulation as a more advanced iterative improve-

ment method. In particular, given a starting BSP schedule

and two superstep indices 𝑠1 ≤ 𝑠2, we define a partial ILP

that only reorganizes the supersteps between 𝑠1 and 𝑠2; that

is, we only consider nodes 𝑣 that are currently assigned to

one of the supersteps in the interval [𝑠1, 𝑠2], and try to re-

assign these differently to any processor and any superstep

in [𝑠1, 𝑠2], with the rest of the schedule unchanged. This

gives a significantly smaller ILP that essentially only scales

with the number of supersteps between 𝑠1 and 𝑠2 and the

number of nodes assigned to these supersteps. Given this

partial ILP formulation, we can then divide the range of

supersteps into disjoint intervals, and then repeatedly use

this approach to further polish each part of our schedule.

• ILPcs: We also devise and implement a separate ILP repre-

sentation for the communication scheduling subproblem,

i.e. the scheduling of communication steps Γ when 𝜋 and 𝜏

are already fixed. This problem has a significantly smaller

degree of freedom, hence the ILP solver can often return

reasonably good solutions for it on the entire DAG, even

for DAGs of larger size. If we already have a BSP schedule

with a specific 𝜋 and 𝜏 , we can use this ILP formulation

to find a more optimal scheduling of the communication

steps, hence resulting in a lower total cost.

When using an ILP solver in practice, we can achieve much

better results by starting the solver from a good initial solution;

this is provided by the initialization and local search algorithms

discussed before.

5

Pál András Papp, Georg Anegg, Aikaterini Karanasiou, and Albert-Jan N. Yzelman

4.5 Multilevel approach
While our algorithms above perform well in general, we have found

that they are often unable to find good solutions in problems domi-

nated by communication costs, e.g. when the weights 𝑐𝑣 or some

of the parameters 𝑔, ℓ or 𝜆𝑝1,𝑝2 are excessively large. Intuitively

speaking, in this case, a reasonable solution always needs to assign

a well-connected cluster of nodes to the same processor, in order

to avoid too much communication. In contrast to this, both our

initialization heuristics and our local search algorithms attempt to

(re)schedule single nodes separately, so they do not perform well

in this case.

In order to address this problem, we also present a multilevel
scheduling algorithm, inspired by the multilevel approach that

consistently provides state-of-the-art results for hypergraph parti-

tioning and other problems [15, 31, 33, 37]. When adapted to our

scheduling problem, the three main steps of the multilevel paradigm

are as follows:

(1) Coarsening the DAG iteratively into smaller and smaller

DAGs, which (ideally) retain most of the structure of the

original DAG. In our case, we do this by repeatedly contract-

ing a selected edge (𝑢, 𝑣) of the DAG into a single node. The

contracted edges are chosen in each step such that (i) the

graph still remains a DAG after the contraction, and (ii) we

prefer edges (𝑢, 𝑣) where the total work weight𝑤 (𝑢)+𝑤 (𝑣)
is small, but the communication weight 𝑐 (𝑢) is large.

(2) Solving the BSP scheduling problem in our coarsened DAG

with the algorithms discussed before. The coarsened DAG

is not only much smaller (and hence more viable for our

algorithms), but also naturally ensures that larger clusters

of nodes are assigned to the same processor and superstep.

(3) Uncoarsening and refining this schedule iteratively. That
is, in each step, we undo the next few contraction steps in a

reverse order, thus obtaining a slightly larger DAG, and we

extend our current assignment 𝜋 and 𝜏 to the newly uncon-

tracted nodes. We then execute a few iterative improvement

steps (using our local search algorithm) to ensure that the

schedule is further refined to fit the more delicate structure

of the more uncoarsened DAG.

Note that this approach is somewhat similar to the idea of com-

bining an acyclic DAG partitioner with list schedulers in the work

of [27]. However, while most of the experiments in [27] focus on

creating a few (at most 4 ·𝑃) larger partitions, our coarsening phase
sorts the DAG into a larger number of smaller clusters. Even more

importantly, instead of applying a partitioning directly, our algo-

rithm coarsens the DAG in a step-by-step fashion, since the gradual

refinement steps in the uncoarsening phase are the key element of

the multilevel approach.

5 COMPUTATIONAL DAG DATABASE
Besides the algorithms, we also present a collection of DAGs that

represent a diverse set of real-world computational tasks, and

hence offer a large and realistic benchmark to evaluate our sched-

uling algorithms. Our computational DAG database is available at

𝐴

𝑢

coarse-grained

𝐴[2, 2]

𝐴[2, 1]

𝐴[1, 1]

𝑢 [2]

𝑢 [1]

fine-grained

example matrix-vector multiplication

(gray cells denote nonzero entries)

𝐴

𝑢

Figure 2: Coarse-grained and fine-grained DAG representa-
tion of a simple matrix-vector multiplication.

https://github.com/Algebraic-Programming/HyperDAG_DB, and

its details are discussed in Appendix B.

Most of the DAGs in our database correspond to computations in

some algebraic form: they are derived either directly from algebraic

computations, or from computations in various other areas that

can naturally be expressed in algebraic form. Since these kinds of

computations typically work with matrices and vectors, there are

two natural ways to represent them as computational DAGs. In the

coarse-grained representation, each matrix or vector corresponds

to (the output of) a single node in our DAG. In the fine-grained
representation, we also attempt to capture the internal structure of

matrices/vectors: in this case, each nonzero entry in a matrix/vector

is represented by (the output of) a separate node in our DAG. An

example for the two representations is shown in Figure 2.

To obtain coarse-grained DAGs, we extended the C++ Graph-

BLAS framework from [45] with a so-called hyperDAG backend,
which automatically extracts the structure of a given computation

while the computation is running. This allows us to conveniently

obtain a DAG representation for the wide variety of algorithms

implemented in GraphBLAS, such as the conjugate gradient and

biconjugate gradient stabilized methods, the pagerank algorithm,

label propagation, 𝑘-nearest neighbors, and manymore. Since many

of these algorithms are iterative methods, we can obtain different

computational DAGs with this technique if we run the given algo-

rithms for a predefined number of iterations, or until convergence.

To obtain fine-grained DAGs, the extension of GraphBLASwould

be significantly more technical, so we follow a different approach:

we produce a simple tool that synthetically generates the computa-

tional DAG corresponding to four concrete algorithms (conjugate

gradient, 𝑘-nearest neighbors, sparse matrix-vector multiplication

6

https://github.com/Algebraic-Programming/HyperDAG_DB

Efficient Multi-Processor Scheduling in Increasingly Realistic Models

and iterated matrix-vector multiplication) for a given pattern of

nonzeros in the input matrices/vectors. While this only captures a

few algorithms, it also has the advantage that we can conveniently

generate a large number of computational DAGs (of any desired

size) by running this generator for different matrices of a specific

size and density of nonzeros.

As a technical detail, we note that in line with some recent works

[29, 31], the DAGs in our database are represented in a hypergraph

format (with hyperedges containing a node and all of its direct

successors), but these are easy to convert back into a DAG format.

6 EXPERIMENTAL SETUP
For our experiments, we implemented the algorithms described

above. Since the CBC ILP solver has a convenient Python interface,

we implemented the ILP-based methods in Python, and the rest

of the algorithms in C++. Our experiments were conducted on a

workstation equipped with Intel Core i9-10900 CPU at 2.80GHz and

62.5 GiB of RAM.

The up-to-date version of our scheduling framework is available

at https://github.com/Algebraic-Programming/OneStopParallel.We

note that the current version of this scheduling tool has been sig-

nificantly extended and upgraded since our experiments. For repro-

ducibility, the version of the implementation used for the exper-

iments, as well as the computational DAG database and the data

from our experiments, are available in the repository at [1].

In order to tune our algorithms, we first ran some preliminary

experiments on a small training set of 10 fine-grained computational

DAGs, with their sizes ranging from 𝑛 = 15 to 𝑛 = 2000, and with

BSP parameter combinations from 𝑃 ∈ {4, 8, 16} and 𝑔 ∈ {1, 3, 5},
and a fixed ℓ = 5. These initial experiments (discussed in Appendix

C) showed that ILPinit is only competitive when we have very

few processors, while it is rather time-consuming; as such, we chose

to only apply ILPinit for 𝑃 = 4.

We also observed that the CBC solver can usually return rela-

tively good solutions whenever the number of variables in the ILP

representation is below approximately 4 000; we have used this as

our guiding principle in ILPpart, choosing to extend the superstep
interval [𝑠1, 𝑠2] until the number of variables in the resulting ILP

exceeds 4 000. Besides this, we also noted that the ILP solver rarely

returns any reasonable solution above 20 000 variables: in this case,

even the preprocessing heuristics of CBC can exceed an 1-hour time

limit. Due to this, we only attempt the naive ILPfull approach

from [28] in very small DAGs, where the estimated number of

ILP variables is below 20 000. We point out that this limitation is

partially due to the fact that our work uses an open-source ILP

solver; with today’s more powerful commercial ILP solvers, the

same approach could be applied to a significantly higher number

of variables.

For our main experiments, we construct 4 different test sets of

DAGs, labeled tiny, small, medium and large, with 𝑛 in the ranges

[40, 80], [250, 500], [1000, 2000] and [5000, 10000], respectively. We

generated a set of fine-grained instances with different properties

(varying matrix sizes and iterations to produce some “wider” and

some “deeper” DAGs), covering these intervals. This resulted in 12

DAGs in the tiny dataset, and 21 in the remaining datasets (the

tiny set is smaller since only a few parameter options can generate

BSP schedule

ILPcs

ILPfull / ILPpart

select best

HC+HCcsHC+HCcs HC+HCcs

SourceBSPg ILPinit

scheduling problem
(DAG + parameters)

Figure 3: Summary of our scheduling framework.

so small DAGs). We further added to each of these datasets all the

coarse-grained instances in the DAG database which has 𝑛 in the

same interval.

Besides the machine parameters in the training set, we exper-

iment with different values of ℓ , and also with different NUMA

parameters. Our NUMA settings each correspond to a binary tree

hierarchy over the 𝑃 leaf nodes, with the communication cost in-

creasing by a specific factor Δ over each new level, with choices

of Δ ∈ {2, 3, 4}. For example, in case we have 𝑃 =8 and Δ=3, then

the communication costs from the first processor are 𝜆1,2=1, then

𝜆1,𝑝 =3 for 𝑝 ∈ {3, 4}, and 𝜆1,𝑝 =9 for 𝑝 ∈ {5, 6, 7, 8}.
Finally, we also create a smaller dataset with DAGs of size 𝑛 ∈

[50000, 100000], called the huge dataset, in order to observe how

our simpler algorithms scale to even larger DAGs. We do not study

the ILP-based methods here, since they would be far too time-

consuming in this case.

For the experiments, we combine our algorithms in the pipeline

shown in Figure 3. We begin by running the initialization heuristics

to obtain different initial schedules. We then improve each of these

separately with the local search methods (since running HC+HCcs is
rather inexpensive), and then select the best schedule obtained this

way. We then use the ILP-based methods: we begin with ILPfull
in the few cases where the number of variables is below 20 000. If

ILPfull was not applicable, or its solution was not shown to be

optimal by the ILP solver, we apply the further ILP-based methods

ILPpart and ILPCs.
When ILPfull is applicable, we assign a time limit of 1 hour

to this. We allow 5 minutes for HC+HCcs and 5 minutes for ILPcs
(although these algorithms rarely time out), and 3 minutes for each

iteration of ILPpart.
When using the multilevel approach, the pipeline begins with

a coarsening step (see Figure 4). We then apply the scheduling

framework shown in Figure 3, and finally refine the DAG in the end.

Since the coarsened versions of the DAGs only provide an imprecise

estimation of the real amount of communication required in the

7

https://github.com/Algebraic-Programming/OneStopParallel

Pál András Papp, Georg Anegg, Aikaterini Karanasiou, and Albert-Jan N. Yzelman

BSP schedule

HCcs+ILPcs

uncoarsen and

refine

HC

schedule for
coarse DAG

base scheduler

coarsen DAG

scheduling problem
(DAG + parameters)

Figure 4: Summary of our multilevel framework. Base sched-
uler refers to the pipeline in Figure 3 (without ILPcs).

original DAG, we explicitly run the communication scheduling

algorithms (HCcs and ILPcs) after the uncoarsening phase.

7 EMPIRICAL RESULTS
On any given problem instance, we evaluate the scheduling algo-

rithms by the ratio between the cost returned by our algorithm and

the baselines. In each dataset/experiment, we then aggregate these

ratios through a geometric mean (this is more accurate for ratios

than the average), to obtain a metric of the overall improvement

achieved by our algorithms (with respect to the baselines) on the

dataset. The results in our figures are normalized with respect to

the cost of the Cilk baseline.
As for our remaining baselines, we found that ETF and BL-EST

are consistently outperformed by HDagg, so out of these, we only
include HDagg in our figures and tables. The schedules achieved by

ETF and BL-EST are briefly discussed in Appendix C.

For simplicity, besides the baselines, our diagrams only show the

best initialization method (labelled Init), the cost after applying
HC+HCcs (labelled HCcs), and the final cost after all the ILP methods

(labelled ILP). More details on the results (e.g. improvements by

each separate ILP method) are also provided in Appendix C.

7.1 Without NUMA
We first run our schedulers on the tiny, small, medium and large
datasets, for 𝑃 ∈ {4, 8, 16}, 𝑔 ∈ {1, 3, 5} and ℓ = 5, without NUMA.

Over the combination of all parameters and datasets, the mean

cost ratio between Cilk and our scheduler is 0.56, while the cost

ratio between HDagg and our scheduler is 0.76. This means that our

approach indeed returns schedules with significantly lower cost

than the baselines: it achieves a 44% cost reduction compared to

Cilk, and a 24% reduction compared to HDagg.

A detailed analysis also shows that this improvement factor de-

pends on the choice of parameters and dataset. In particular, Table 1

shows the cost reduction with respect to the baselines, separated

according to 𝑔 and 𝑃 (left), and 𝑔 and the dataset (right). The table

shows that the improvement ranges from 32% to 51% compared to

Cilk, and from 13% to 40% compared to HDagg. We can observe

that the difference between our scheduler and the baselines consis-

tently grows larger with higher 𝑔; this is because communication

costs become more dominant, but these are not (accurately) con-

sidered by the baselines. The same holds for larger 𝑃 values, since

this often result in more data that needs to be communicated in

a schedule. As for the size of the dataset, the tables suggest that

the improvement compared to Cilk is mostly unaffected, while

the improvement compared to HDagg becomes smaller for large

datasets. This is likely because our schedulers come with a higher

time complexity, and hence they do not scale as well as HDagg;
improving this property is a strong candidate for our future work.

However, we note that even in this cases, our schedules are still

consistently better than those returned by HDagg.
In order to understand the role of each of our different algo-

rithmic ingredients, we also show the cost ratios achieved by the

algorithms (compared to Cilk), separated for different values of 𝑔,

in Figure 5. The figure shows that while the initialization heuris-

tics are already much more efficient than the baselines, the local

search and ILP methods both achieve some further improvement.

In Appendix C, we also discuss the role of the different algorithms

in more detail; for instance, the ILP-based methods tend to result in

a more significant improvement on the smaller datasets, and only a

minor improvement for larger DAGs.

We also considered the effect of the latency parameter ℓ on our

schedules separately (see Appendix C for details). Our experiments

show that the difference between our scheduler and the baselines

also grows for larger values of ℓ , although not as rapidly and as

consistently as for the parameter 𝑔. This is in line with our previous

observations, since the latency ℓ is essentially a different kind of

communication cost, which is once again not considered by the

baseline methods.

For our preliminary experiments on the huge dataset, we only
applied the non-ILP methods from our algorithmic framework:

BSPg and Source, followed by HC+HCcs with a larger time limit of

30 minutes. Even for this larger dataset, our scheduler achieves an

improvement ranging from 15% to 41% compared to Cilk, and a

more marginal improvement from 6% to 13% compared to HDagg
(details again in Appendix C). This demonstrates that our general

approach also scales reasonably well to computational DAGs with

up to 100 000 nodes.

7.2 With NUMA effects
When we extend the BSP model with NUMA effects, the improve-

ments achieved by our scheduler are even larger. On average over

all the parameters 𝑃 ∈ {8, 16} and Δ ∈ {2, 3, 4}, our method provides

a 60% improvement compared to Cilk and a 43% improvement

compared to HDagg.
The results in this setting show an even stronger dependency

on 𝑃 and the NUMA multiplier Δ: the improvement consistently

grows in both of these parameters, as also illustrated in Figure 6

8

Efficient Multi-Processor Scheduling in Increasingly Realistic Models

Table 1: Results achieved by our scheduler (in a NUMA-free setting), restricted to given values of 𝑔, 𝑃 and given datasets. The
two numbers in each cell show the reduction in cost compared to Cilk and HDagg, respectively.

𝑔 = 1 𝑔 = 3 𝑔 = 5

𝑃 = 4 32% / 20% 40% / 24% 44% / 26%

𝑃 = 8 40% / 21% 45% / 25% 45% / 25%

𝑃 = 16 43% / 18% 49% / 26% 51% / 30%

𝑔 = 1 𝑔 = 3 𝑔 = 5

tiny 32% / 26% 40% / 35% 43% / 40%

small 38% / 22% 44% / 30% 46% / 32%

medium 43% / 17% 47% / 21% 49% / 23%

large 41% / 13% 46% / 14% 48% / 15%

Cilk HDagg Init HCcs ILP
0

0.5

1

𝑔 = 1

Cilk HDagg Init HCcs ILP
0

0.5

1

𝑔 = 3

Cilk HDagg Init HCcs ILP
0

0.5

1

𝑔 = 5

Figure 5: Performance comparison of Cilk, HDagg and our scheduling algorithms without NUMA effects, for values 𝑔 ∈ {1, 3, 5}.

(let us ignore the ML column in the figure for now). In particular,

for the case of 𝑃 = 8 and Δ = 2, the improvement is only 48%

compared to Cilk and only 27% compared to HDagg. On the other

hand, when we have 𝑃 = 16 and Δ = 4, the schedule returned by

our algorithm has a 71% lower cost than Cilk, and a 58% lower cost

than HDagg. We also show the concrete improvements for each case

in a numerical format in Table 2.

Note that the case of 𝑃 = 16 and Δ = 4 amounts to a very sig-

nificant improvement in scheduling cost: more than a 3× factor

for Cilk, and almost a 2.5× factor for HDagg. Moreover, since Δ is

often indeed large in practice, one might argue that this is the most

realistic among our parameters for capturing today’s computing ar-

chitectures. Altogether, this suggests that our approach may indeed

be able to provide significantly better schedules for many relevant

applications.

We also point out that the local search and ILP methods also

become much more important ingredients in this NUMA setting,

achieving a notably larger further improvement than in the case

without NUMA.

7.3 Multilevel scheduling
Finally, we analyze our multilevel scheduling method, which was

designed particularly for the case when communication costs are

very high. For instance, in our previous setting for the highest

choice of Δ=4, we have seen that our scheduler is notably better

than the baselines. However, this is only their relative performance;

in fact, both our scheduler and the baselines perform rather poorly

in this setting, and even the solutions returned by our scheduler

Table 2: Cost reduction achieved by our base scheduler in a
setting with NUMA effects, for different values of 𝑃 and Δ,
compared to Cilk and HDagg, respectively.

Δ = 2 Δ = 3 Δ = 4

𝑃 = 8 48% / 27% 55% / 35% 61% / 42%

𝑃 = 16 57% / 36% 67% / 51% 71% / 58%

are often barely better (or in several cases, in fact, even worse) than

the trivial solution of assigning all nodes to the same processor

and superstep. Our multilevel algorithm, on the other hand, is

able to find good solutions even in this rather challenging setting,

consistently beating this trivial baseline.

The cost ratio of the multilevel method to the other schedulers is

also shown in Figure 6 for different values of 𝑃 and Δ. For complete-

ness, we also show the improvement values in numerical format in

Table 3. The figure shows that when communication costs are high

(e.g. if we have Δ=4, or if we only have Δ=3 but 𝑃 =16, and hence

there are NUMA coefficients as high as 𝜆1,16=Δ
log

2
𝑃−1=27 in our

binary hierarchy), then the multilevel method is able to consider-

ably outperform our base scheduler. For the highest choice of 𝑃 and

Δ, the multilevel algorithm finds solutions that on average provide

a further factor 2× improvement to our base scheduler. Altogether,

this amounts to a very significant, almost a factor 5× cost reduction,
even compared to HDagg.

9

Pál András Papp, Georg Anegg, Aikaterini Karanasiou, and Albert-Jan N. Yzelman

Cilk HDagg Init HCcs ILP ML
0

0.2

0.4

0.6

0.8

1

𝑃 = 8, Δ = 2

Cilk HDagg Init HCcs ILP ML
0

0.2

0.4

0.6

0.8

1

𝑃 = 8, Δ = 3

Cilk HDagg Init HCcs ILP ML
0

0.2

0.4

0.6

0.8

1

𝑃 = 8, Δ = 4

Cilk HDagg Init HCcs ILP ML
0

0.2

0.4

0.6

0.8

1

𝑃 = 16, Δ = 2

Cilk HDagg Init HCcs ILP ML
0

0.2

0.4

0.6

0.8

1

𝑃 = 16, Δ = 3

Cilk HDagg Init HCcs ILP ML
0

0.2

0.4

0.6

0.8

1

𝑃 = 16, Δ = 4

Figure 6: Performance comparison of Cilk, HDagg and our scheduling algorithms with NUMA effects, for different 𝑃 ∈ {8, 16}
and different NUMA increase factors Δ ∈ {2, 3, 4}. The multilevel approach (ML) is shown separately at the end. This specific
figure only covers the small, medium and large datasets, since tiny is too small to coarsify with ML; however, in general, our
improvement factors in Section 7.2 and Appendix C also include tiny.

Table 3: Cost reduction achieved by the multilevel algorithm
with NUMA effects, for different 𝑃 and Δ, compared to Cilk
and HDagg.

Δ = 2 Δ = 3 Δ = 4

𝑃 = 8 40% / 10% 56% / 32% 67% / 48%

𝑃 = 16 54% / 26% 76% / 61% 87% / 79%

However, while the multilevel algorithm achieves a large further

improvement for high communication costs (large Δ and/or 𝑃), on

the other hand, for the case of Δ = 2, the figure shows that ML is

clearly inferior to our base scheduler. Similarly, if we revisit the set-

ting of Section 7.1 without NUMA effects, the multilevel approach

provides notably weaker solutions in general than our base sched-

uler (see Appendix C for details). This suggests that our multilevel

method is indeed a specialized tool, which is useful mostly when

our problem is dominated by high communication costs. However,

we note that our algorithm is a relatively simple implementation of

this multilevel scheduling idea; we believe that with some further

work, the same approach could become an efficient tool for any

choice of parameters.

8 CONCLUSION
Our results show that if we consider a more detailed and more

realistic model of the scheduling problem, then applying a range of

advanced algorithms can significantly outperform classical sched-

uling heuristics like Cilk or HDagg.
Unsurprisingly, the main drawback of these more advanced al-

gorithms is that they come with a notably higher running time.

More specifically, BSPg and Source take a similarly small amount

of time as the baselines, but the remaining algorithms are more

time-consuming: HC+HCcs and Multi typically take between 1-2

seconds to 1-2 minutes on our DAGs, and the ILP-based methods

take even longer, hence each individual ILP is capped at a few min-

utes. While the running times of these initial implementations can

still be reduced significantly, in general, it is inevitable that this

more complex direct optimization approach requires much more

time than lightweight heuristics.

However, while this running time is certainly a limitation of our

work, the benefits from the higher-quality schedules can still make

our approach useful in various applications, e.g.:

10

Efficient Multi-Processor Scheduling in Increasingly Realistic Models

• when the same computation needs to be executed many

times, possibly with different inputs,

• when the computation can be captured in a coarse-grained

way by relatively small DAGs, but possibly still with large

node weights,

• in areas such as machine learning, where this scheduling

timemay still be negligible compared to the execution of the

computation itself (e.g. the training of a neural network).

Furthermore, even in areas where our approach is not directly ap-

plicable in practice, our algorithms still provide crucial insight on

the performance of the baseline heuristics: our solutions with much

smaller cost prove that the schedules returned by these baselines

are often very far from the optimum. Besides this, our results also

highlight the fact that many real-world aspect, such as communica-

tion volume and NUMA costs, are critical to include in our model,

otherwise the algorithms may return solutions that are significantly

suboptimal.

There are many natural directions for future work, i.e. towards

finding schedules of even lower cost in BSP, or in evenmore detailed

models. In particular, we note that most of the ingredients in our al-

gorithmic framework are relatively simple applications of a specific

technique, used as prototypes to demonstrate the feasibility of our

entire approach. As such, each of these algorithmic building blocks

can be further improved into, or replaced by more sophisticated

methods: we could apply e.g. more complex local search techniques

that also attempt to escape local mimima, or more efficient ILP

formulations for our problems, or more advanced methods for the

coarsening and refining phase of the multilevel method. We also

point out that our experimental results were achieved with an open-

source ILP solver; simply employing one of today’s more powerful

commercial ILP solvers could already significantly improve these

results without any changes to the framework itself.

ACKNOWLEDGMENTS
We would like to thank Benjamin Lozes for his valuable help with

applying the HDagg algorithm as a baseline in our work.

REFERENCES
[1] 2024. Supplementary material. The scheduling algorithm implementations

used in our experiments, our computational DAG database, and the data from

our experiments are available at: https://github.com/Algebraic-Programming/

Artifacts/tree/master/SPAA_2024_Efficient_Multi-Processor_Scheduling.

[2] Thomas L Adam, K. Mani Chandy, and JR Dickson. 1974. A comparison of list

schedules for parallel processing systems. Commun. ACM 17, 12 (1974), 685–690.

[3] Ishfaq Ahmad and Yu-Kwong Kwok. 1998. On exploiting task duplication in

parallel program scheduling. IEEE Transactions on parallel and distributed systems
9, 9 (1998), 872–892.

[4] Rob H Bisseling. 2020. Parallel Scientific Computation: A Structured Approach
Using BSP. Oxford University Press, USA.

[5] Robert D Blumofe and Charles E Leiserson. 1999. Scheduling multithreaded

computations by work stealing. Journal of the ACM (JACM) 46, 5 (1999), 720–748.
[6] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,

Eunice Santos, Ramesh Subramonian, and Thorsten Von Eicken. 1993. LogP:

Towards a realistic model of parallel computation. In Proceedings of the fourth
ACM SIGPLAN symposium on Principles and practice of parallel programming.
1–12.

[7] John Forrest and Robin Lougee-Heimer. 2005. CBC user guide. In Emerging
theory, methods, and applications. INFORMS, 257–277.

[8] Alfredo Goldman, Gregory Mounié, and Denis Trystram. 1998. Near optimal

algorithms for scheduling independent chains in BSP. In Proceedings. Fifth Inter-
national Conference on High Performance Computing. IEEE, 310–317.

[9] Mohammadtaghi Hajiaghayi, Theodore Johnson, Mohammad Reza Khani, and

Barna Saha. 2014. Hierarchical graph partitioning. In Proceedings of the 26th

ACM symposium on Parallelism in algorithms and architectures (SPAA). 51–60.
[10] Julien Herrmann, Jonathan Kho, Bora Uçar, Kamer Kaya, and Ümit V Çatalyürek.

2017. Acyclic partitioning of large directed acyclic graphs. In 2017 17th IEEE/ACM
international symposium on cluster, cloud and grid computing (CCGRID). IEEE,
371–380.

[11] Jonathan MD Hill, Bill McColl, Dan C Stefanescu, Mark W Goudreau, Kevin

Lang, Satish B Rao, Torsten Suel, Thanasis Tsantilas, and Rob H Bisseling. 1998.

BSPlib: The BSP programming library. Parallel Comput. 24, 14 (1998), 1947–1980.
[12] JA Hoogeveen, Jan Karel Lenstra, and Bart Veltman. 1994. Three, four, five, six,

or the complexity of scheduling with communication delays. Operations Research
Letters 16, 3 (1994), 129–137.

[13] Jing-Jang Hwang, Yuan-Chieh Chow, Frank D Anger, and Chung-Yee Lee. 1989.

Scheduling precedence graphs in systems with interprocessor communication

times. siam journal on computing 18, 2 (1989), 244–257.

[14] Hidehiro Kanemitsu, Masaki Hanada, and Hidenori Nakazato. 2016. Clustering-

based task scheduling in a large number of heterogeneous processors. IEEE
Transactions on Parallel and Distributed Systems 27, 11 (2016), 3144–3157.

[15] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. 1997. Multi-

level hypergraph partitioning: Application in VLSI domain. In Proceedings of the
34th annual Design Automation Conference. 526–529.

[16] Janardhan Kulkarni, Shi Li, Jakub Tarnawski, and Minwei Ye. 2020. Hierarchy-

based algorithms for minimizing makespan under precedence and communica-

tion constraints. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). SIAM, 2770–2789.

[17] Yu-Kwong Kwok and Ishfaq Ahmad. 1996. Dynamic critical-path scheduling: An

effective technique for allocating task graphs to multiprocessors. IEEE transac-
tions on parallel and distributed systems 7, 5 (1996), 506–521.

[18] Jan Karel Lenstra and AHG Rinnooy Kan. 1978. Complexity of scheduling under

precedence constraints. Operations Research 26, 1 (1978), 22–35.

[19] Joseph Y-T Leung and Gilbert H Young. 1990. Minimizing total tardiness on a

single machine with precedence constraints. ORSA Journal on Computing 2, 4

(1990), 346–352.

[20] Elaine Levey and Thomas Rothvoss. 2016. A (1+ epsilon)-approximation for

makespan scheduling with precedence constraints using LP hierarchies. In Pro-
ceedings of the forty-eighth annual ACM symposium on Theory of Computing.
168–177.

[21] Shi Li. 2021. Towards PTAS for precedence constrained scheduling via combina-

torial algorithms. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 2991–3010.

[22] Quanquan C Liu, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R Wang.

2022. Scheduling with Communication Delay in Near-Linear Time. In 39th
International Symposium on Theoretical Aspects of Computer Science (STACS).

[23] Bill McColl. 2021. Mathematics, Models and Architectures. Mathematics for
Future Computing and Communications (2021), 6.

[24] William F McColl. 1995. Scalable computing. Computer Science Today (1995),

46–61.

[25] William F McColl and Alexandre Tiskin. 1999. Memory-efficient matrix multipli-

cation in the BSP model. Algorithmica 24 (1999), 287–297.
[26] Shang Mingsheng, Sun Shixin, and Wang Qingxian. 2003. An efficient parallel

scheduling algorithm of dependent task graphs. In 4th International Conference on
Parallel and Distributed Computing, Applications and Technologies. IEEE, 595–598.

[27] M Yusuf Özkaya, Anne Benoit, Bora Uçar, Julien Herrmann, and Ümit V

Çatalyürek. 2019. A scalable clustering-based task scheduler for homogeneous

processors using DAG partitioning. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 155–165.

[28] Pál András Papp, Georg Anegg, and AN Yzelman. 2023. DAG Scheduling in the

BSP Model. arXiv preprint arXiv:2303.05989 (2023).
[29] Pál András Papp, Georg Anegg, and Albert-Jan N Yzelman. 2023. Partitioning

hypergraphs is hard: Models, inapproximability, and applications. In 35th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA). 415–425.

[30] Christophe Picouleau. 1995. New complexity results on scheduling with small

communication delays. Discrete Applied Mathematics 60, 1-3 (1995), 331–342.
[31] Merten Popp, Sebastian Schlag, Christian Schulz, and Daniel Seemaier. 2021.

Multilevel Acyclic Hypergraph Partitioning. In 2021 Proceedings of the Workshop
on Algorithm Engineering and Experiments (ALENEX). SIAM, 1–15.

[32] Andrei Radulescu and Arjan JC Van Gemund. 2002. Low-cost task scheduling

for distributed-memory machines. IEEE transactions on parallel and distributed
systems 13, 6 (2002), 648–658.

[33] Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter

Sanders, and Christian Schulz. 2016. K-way hypergraph partitioning via n-level

recursive bisection. In 2016 Proceedings of the Eighteenth Workshop on Algorithm
Engineering and Experiments (ALENEX). SIAM, 53–67.

[34] David B Skillicorn, Jonathan Hill, and William F McColl. 1997. Questions and

answers about BSP. Scientific Programming 6, 3 (1997), 249–274.

[35] Ola Svensson. 2010. Conditional hardness of precedence constrained scheduling

on identical machines. In Proceedings of the forty-second ACM symposium on
Theory of computing (STOC). 745–754.

11

https://github.com/Algebraic-Programming/Artifacts/tree/master/SPAA_2024_Efficient_Multi-Processor_Scheduling
https://github.com/Algebraic-Programming/Artifacts/tree/master/SPAA_2024_Efficient_Multi-Processor_Scheduling

Pál András Papp, Georg Anegg, Aikaterini Karanasiou, and Albert-Jan N. Yzelman

[36] Haluk Topcuoglu, Salim Hariri, and Min-You Wu. 2002. Performance-effective

and low-complexity task scheduling for heterogeneous computing. IEEE trans-
actions on parallel and distributed systems 13, 3 (2002), 260–274.

[37] Aleksandar Trifunović and William J Knottenbelt. 2008. Parallel multilevel

algorithms for hypergraph partitioning. J. Parallel and Distrib. Comput. 68, 5
(2008), 563–581.

[38] Jeffrey D. Ullman. 1975. NP-complete scheduling problems. Journal of Computer
and System sciences 10, 3 (1975), 384–393.

[39] Leslie G Valiant. 1990. A bridging model for parallel computation. Commun.
ACM 33, 8 (1990), 103–111.

[40] Leslie G Valiant. 2011. A bridging model for multi-core computing. J. Comput.
System Sci. 77, 1 (2011), 154–166.

[41] Huijun Wang and Oliver Sinnen. 2018. List-scheduling versus cluster-scheduling.

IEEE Transactions on Parallel and Distributed Systems 29, 8 (2018), 1736–1749.
[42] Tao Yang and Apostolos Gerasoulis. 1994. DSC: Scheduling parallel tasks on an

unbounded number of processors. IEEE Transactions on parallel and distributed

systems 5, 9 (1994), 951–967.
[43] AN Yzelman and Rob H Bisseling. 2012. An object-oriented bulk synchronous

parallel library for multicore programming. Concurrency and Computation:
Practice and Experience 24, 5 (2012), 533–553.

[44] AN Yzelman, Rob H Bisseling, Dirk Roose, and Karl Meerbergen. 2014. Multi-

coreBSP for C: a high-performance library for shared-memory parallel program-

ming. International Journal of Parallel Programming 42 (2014), 619–642.

[45] AN Yzelman, D Di Nardo, JM Nash, and WJ Suijlen. 2020. A C++ GraphBLAS:

specification, implementation, parallelisation, and evaluation. arXiv preprint
arXiv:1906.03196 (2020).

[46] Behrooz Zarebavani, Kazem Cheshmi, Bangtian Liu, Michelle Mills Strout, and

Maryam Mehri Dehnavi. 2022. HDagg: hybrid aggregation of loop-carried

dependence iterations in sparse matrix computations. In 2022 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 1217–1227.

12

Efficient Multi-Processor Scheduling in Increasingly Realistic Models

A DETAILS ON OUR ALGORITHMS
This section provides a more detailed discussion of our different

algorithms. Recall that the implementations of these algorithms

that we used in the experiments (together with our database and

the data from the experiments) are available at [1], while a more

up-to-date version of our scheduling framework can be accessed at

https://github.com/Algebraic-Programming/OneStopParallel.

Our algorithms can be run via a set of Python scripts, which allow

us to configure the files or directories containing the input problems

to solve, and several parameters of the solving process. Besides this

user interface, the Python scripts also contain the implementations

of our ILP-based methods, and are responsible for invoking the

CBC ILP solver.

The remaining C++ code (the Cilk, ETF and BL-EST baseline

algorithms and their conversion to BSP, the BSPg algorithm, the HC
and HCcs local search methods, and the ingredients of the multilevel

framework) are available in the file simple_schedulers.cpp. The
only exception is the Source heuristic, which is implemented in

a separate file named second_heuristic_weights_cluster.cpp.
These two C++ files are automatically compiled and invoked by the

Python scripts.

Finally, we provide the Python scripts required for running and

evaluating HDagg separately, since these are independent from our

own implementations, and they also require the HDagg library as

an external dependency [46].

As a general remark on our algorithms, we also note that some

our simpler methods only return an assignment of nodes to proces-

sors and supersteps, but not a concrete communication schedule.

These algorithms implicitly assume that the corresponding Γ is the

lazy communication schedule defined by the assignment, where ev-

ery value is sent directly and in the last possible superstep; that is, if

a node 𝑣 has a direct predecessor 𝑢, and 𝜋 (𝑣) ≠ 𝜋 (𝑢), then we have

(𝑢, 𝜋 (𝑢), 𝜋 (𝑣), 𝜏 (𝑣) − 1) ∈ Γ. In particular, the BSP-converted vari-

ants of the baseline algorithms, the BSPg and Source heuristics, and
even HC assumes such a lazy schedule, whereas the ILP-based meth-

ods and HCcs return a specific, optimized communication schedule.

We note that ILPinit also returns a specific Γ, but this is replaced
by the corresponding lazy schedule in our pipeline, since the algo-

rithm is followed by HC, which is only designed to work with lazy

communication schedules.

A.1 Baseline methods
The main idea of the Cilk work-stealing scheduler was already

outlined before: it is a greedy algorithm where every ready task

(i.e. node with all of its predecessors already computed) is added

to the “ready stack” of one of the processors. Whenever one of the

processors become idle (it finishes computing a node), it takes the

topmost ready task from its own stack, and begins the execution

of this node. If the processor’s stack is empty, it selects another

processor with a non-empty stack (uniformly at random among

these processors), and starts executing the node at the bottom of

this stack, also removing the node from the stack. This ensures that

no processor is idle whenever there is a ready node.

We note that originally, Cilk was not defined on DAGs, but

instead on processes that spawn further subtasks during execution.

In this original setting, each spawned subtask is added to the top

of the stack of the processor executing the parent process. In con-

trast to this original setting, our DAGs do not have parent-child

relationships between the given nodes. To adapt the algorithm to

DAGs, we use a very similar rule: whenever the execution of the

last direct predecessor of a node 𝑣 is finished, if this happens on

processor 𝑝 , then 𝑣 is added to the top of processor 𝑝’s stack.

As for BL-EST and ETF, we refer the reader to the work of [27]

for more details. We note that our baseline implementation for

both of these algorithms corresponds to the versions described in

[27], which is already extended with the concept of communication

volume (but not with latency or NUMA effects, since these are new

in our model). In case have NUMA effects, we compute the Earliest

Start Time (EST) in these baseline algorithms by considering the

average coefficient of the communication cost over all pairs of pro-

cessors, and multiplying 𝑐 (𝑣) with this number when considering

the required communication steps. Note that an extension of the

EST computation with NUMA factors would also be possible, to

obtain a version of these baselines that is more specialized towards

our more realistic model; however, we leave the investigation of

this approach to future work.

We also note that Cilk, BL-EST and ETF assign nodes to concrete
points in time. This can be naturally converted into a BSP schedule

by sorting it into supersteps iteratively: if some of the nodes are

already assigned to supersteps 1, ..., (𝑠− 1), we can find the earliest

point 𝑡 in time when our classical schedule begins executing a node

𝑣 such that (i) 𝑣 is not yet assigned to a superstep, (ii) 𝑣 has a direct

predecessor 𝑣0 also not yet assigned to a superstep, and (iii) our

schedule has 𝜋 (𝑣) ≠ 𝜋 (𝑣0). This implies that the next computation

phase can last at most until time 𝑡 ; hence we assign all nodes that

are executed before step 𝑡 to superstep 𝑠 , and we continue with this

procedure for superstep (𝑠 + 1).
Finally, HDagg is amore sophisticated algorithmic baseline, which

directly develops a BSP-like schedule, sorting the nodes of the DAG

into supersteps (called ‘wavefronts’), and then distributing nodes

among processors in each wavefront. The algorithm strives to en-

sure both a balanced workload among processors in a superstep,

and a reduced amount of inter-processor communication between

the supersteps. For more details of the algorithm, we refer the

reader to [46]. Note that this algorithm was originally developed

(and analyzed) for the specific purpose of speeding up SpTRSV com-

putations, i.e. solving sparse linear systems defined by a triangular

matrix. However, the method is in fact a general DAG scheduling

algorithm that can be applied to any computational DAG; it is even

analyzed in [46] using DAG terminology. That is, after a topological

ordering, the adjacency matrix of any DAG becomes lower trian-

gular, and by artificially adding an edge from each node to itself

(i.e. setting the main diagonal of the matrix to 1, thus ensuring

it is non-singular), we obtain an SpTRSV problem where the de-

pendency DAG derived from the matrix is identical to our original

computational DAG. As such, the schedule returned by HDagg for
this matrix directly corresponds to a schedule for our original DAG

in the BSP model.

Since the original implementation of HDagg from [46] is openly

available, we directly apply this in our experiments: we convert

our computational DAG into the required triangular matrix format,

we use the example script from the HDagg library to output the

13

https://github.com/Algebraic-Programming/OneStopParallel

Pál András Papp, Georg Anegg, Aikaterini Karanasiou, and Albert-Jan N. Yzelman

Algorithm 1 Summary of the BSPg heuristic

𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝 ← 0

𝑒𝑛𝑑𝑆𝑡𝑒𝑝 ← 𝐹𝑎𝑙𝑠𝑒

𝑓 𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒𝑠 ← {0}
free[𝑝] ← 𝑇𝑟𝑢𝑒 for all 𝑝

while there are still unassigned nodes do
if 𝑒𝑛𝑑𝑆𝑡𝑒𝑝 = 𝑇𝑟𝑢𝑒 and 𝑓 𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒𝑠 = ∅ then

ready𝑝 ← ∅ for all 𝑝

ready𝑎𝑙𝑙 ← ready
𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝 ← 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝 + 1
𝑒𝑛𝑑𝑆𝑡𝑒𝑝 ← 𝐹𝑎𝑙𝑠𝑒

𝑓 𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒𝑠 ← {0}
end if
𝑡 ← earliest time from 𝑓 𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒𝑠

for all nodes 𝑣 that finish at 𝑡 do
free[𝜋 (𝑣)] ← 𝑇𝑟𝑢𝑒

for all out-neighbors 𝑢 of 𝑣 do
if 𝑢’s in-neighbors are all finished then

ready← ready ∪ {𝑢}
if ∀ (𝑢0, 𝑢) ∈ 𝐸 we have either 𝜋 (𝑢0) = 𝜋 (𝑣) or 𝜏 (𝑢0) <
𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝 then

ready𝜋 (𝑣) ← ready𝜋 (𝑣) ∪ {𝑢}
end if

end if
end for

end for
if 𝑒𝑛𝑑𝑆𝑡𝑒𝑝 = 𝐹𝑎𝑙𝑠𝑒 then
while ∃ 𝑝 with free[𝑝] = 𝑇𝑟𝑢𝑒 and ready𝑝 ≠ ∅ or ∃ 𝑝
with free[𝑝] = 𝑇𝑟𝑢𝑒 and ready𝑎𝑙𝑙 ≠ ∅ do

𝑣 ← ChooseNode(𝑝)
delete 𝑣 from ready, ready𝑝 and/or ready𝑎𝑙𝑙
𝜋 (𝑣) ← 𝑝 , 𝜏 (𝑣) ← 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝

𝑓 𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒𝑠 ← 𝑓 𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒𝑠 ∪ {𝑡 +𝑤 (𝑣)}
free[𝑝] ← 𝐹𝑎𝑙𝑠𝑒

end while
end if
if ready𝑎𝑙𝑙 = ∅ and ∃ 𝑃

2
idle processors then

𝑒𝑛𝑑𝑆𝑡𝑒𝑝 ← 𝑇𝑟𝑢𝑒

end if
end while

returned schedule, and then we evaluate this according to the cost

model of our paper.

A.2 Initialization heuristics
The BSPg heuristics is a greedy method that is designed specifically

for developing BSP schedules. Even though the output assigns the

nodes to supersteps, the algorithm still considers the concrete time

step of starting and finishing each task, like in classical schedulers

such as Cilk or ETF; this helps us develop a balanced work cost

between the processors in each superstep. When a task is finished,

we consider the new tasks 𝑣 ∈ 𝑉 that become ready (i.e. have all

of their direct predecessors already finished). If 𝑣 already has a

predecessor on multiple processors in the current superstep, then

𝑣 is added to a general ready𝑎𝑙𝑙 set of nodes that only become

available for all processors in the next superstep. Otherwise, if 𝑣 only

has predecessors on a single processor 𝑝 in the current superstep,

then 𝑣 is added to a set ready𝑝 of that processor, signaling that

processor 𝑝 is already allowed to execute 𝑣 in the current superstep.

Whenever a task is finished and some processor 𝑝 becomes free, they

are assigned a new node to execute (based on rules discussed below),

if this is still possible without closing the current computation phase,

i.e. there are still nodes that have all their direct predecessors on 𝑝

or in earlier supersteps. When half of the processors become idle

(they cannot be assigned new nodes), the computation phase is

closed, and a following superstep is started, where all the nodes in

ready𝑎𝑙𝑙 are now available to each processor.

When selecting a new node to compute for a processor 𝑝 , we

employ the following method (named ChooseNode in our pseu-

docode). We first attempt to choose from the nodes in ready𝑝 that

are only available for 𝑝 , and if this is empty, we choose from the set

ready𝑎𝑙𝑙 available to all processors. From both sets, we use the same

tie-breaking rule that attempts to reduce communication costs, as-

signing a score metric for each node 𝑣 in the set, and selecting the

node with the highest score. For this score, we consider all direct

predecessors 𝑢 of 𝑣 , and if either 𝑢 or one of its direct successors is

already assigned to 𝑝 , then we increase the score of 𝑣 by
𝑐 (𝑢)

outdeg(𝑢) ,
where outdeg(𝑢) is the outdegree of 𝑢. Intuitively, this can be un-

derstood as an estimator for the importance and probability of the

fact that we can assign 𝑢 and all its direct successors to 𝑝 , thus

not having to communicate 𝑢 at all. If 𝑐 (𝑢) is high, then sending

𝑢 results in a higher cost, and thus more important to avoid; if

outdeg(𝑢) is small, then there is a higher chance that we can in-

deed achieve this, hence avoiding a communication. As such, this

simple score metric for 𝑣 aims to estimate our opportunities to save

communication costs in the future if we assign 𝑣 to 𝑝 .

We provide a pseudocode for BSPg in Algorithm 1. Note that 𝑝

always denotes a processor from {1, ..., 𝑃}. We also note that the

pseudocode uses in-neighbor and out-neighbor as the short form

of direct predecessor and direct successor, respectively.

The Source heuristic is similar in the sense that it begins process-

ing the DAG from the source nodes. In each iteration, it essentially

assigns all the current source nodes of the DAG to processors in

some way to form the next superstep. It then disregards (“removes”)

these source nodes (and their outgoing edges) from the DAG to

create the next set of source nodes for the next superstep. In each

superstep, the nodes are assigned to processors following a round-

robin approach. The first superstep is handled in a special way:

the initial source nodes are first organized into clusters, joining

pairs of nodes when they have a common direct successor, and then

these clusters are assigned to processors in a round-robin way. In

all other supersteps, no clustering is done; instead, the source nodes

are sorted in decreasing order according to their work weight, and

then assigned to processors in this order in a round-robin fashion, to

avoid accumulating a too large work cost on any of the processors.

After the round-robin assignment in each superstep, the heuristic

also considers the direct successors of all the source nodes, and if

for any of them it holds that all its in-neighbors are already assigned

to the same processor 𝑝 , then it also assigns this node to processor

𝑝 in the current superstep. This allows us to avoid creating further

supersteps unnecessarily, by slightly relaxing the principle that

only the source nodes are assigned in each superstep.

14

Efficient Multi-Processor Scheduling in Increasingly Realistic Models

We show a pseudocode for Source in Algorithm 2.

Algorithm 2 Summary of the Source heuristic

𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝 ← 0

while there are still unassigned nodes do
𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ← all unassigned 𝑣 ∈𝑉 with indeg(𝑣) = 0

𝑝 ← 1

if 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝 = 1 then
for 𝑣 ∈ 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 do
if 𝑣 shares an out-neighbor with another 𝑢 ∈ 𝑠𝑜𝑢𝑟𝑐𝑒𝑠

then
if 𝑢 is already in a cluster then

add 𝑣 to 𝑢’s cluster

else
combine 𝑣 and 𝑢 into a new cluster

end if
end if

end for
for all clusters 𝑐 do

for all nodes 𝑣 ∈ 𝑐 do
𝜋 (𝑣) ← 𝑝 , 𝜏 (𝑣) ← 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝

delete 𝑣 from 𝐺

end for
𝑝 ← (𝑝 + 1) modulo 𝑃

end for
else

sort 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 in decreasing order by𝑤 (𝑣)
for 𝑣 ∈ 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 in order do
𝜋 (𝑣) ← 𝑝 , 𝜏 (𝑣) ← 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝

delete 𝑣 from 𝐺

𝑝 ← (𝑝 + 1) modulo 𝑃

end for
end if
for all edges (𝑣,𝑢) ∈ 𝐸 with 𝑣 ∈ 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 do

if all in-neighbors of 𝑢 are already assigned to 𝜋 (𝑣) then
𝜋 (𝑢) ← 𝜋 (𝑣), 𝜏 (𝑢) ← 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝

end if
end for
𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝 ← 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝 + 1

end while

Note that both BSPg and Source only define the computation

phases of our schedule by assigning nodes to processors and super-

steps; the corresponding communication steps for each communica-

tion phase are derived in the end according to a lazy communication

schedule.

The ILPinit initializer is discussed later, together with the re-

maining ILP-based methods.

A.3 Local search
Our hill climbing methods take an initial solution (BSP schedule)

provided by one of the initialization methods, and execute small

modifications to this schedule that decrease its total cost, until a

local minimum is reached where none of the modifications lead to

an improvement (or a predefined time limit is exceeded).

As mentioned before, from each current solution, we consider

the modification steps which only change the assignment of single

node 𝑣 . In particular, if we currently have 𝜋 (𝑣) = 𝑝 and 𝜏 (𝑣) = 𝑠 ,

we consider all the solutions for where we have 𝜋 (𝑣) ∈ {1, ..., 𝑃}
(i.e. 𝑣 on any processor) and 𝜏 (𝑣) ∈ {(𝑠 − 1), 𝑠, (𝑠 + 1)} (i.e. 𝑣 in the

previous, same, or next superstep), with the assignments for every

other node unchanged.

Our HC method also employs several data structures to ensure

that the cost of a potential modification can be computed efficiently,

and the same data structures can also be updated efficiently after

executing a modification. For instance, for each superstep 𝑠 , we

keep the work cost and the communication cost of each processor

in a sorted set, and for each processor 𝑝 we keep an external pointer

to the entry describing this processor in the set; this allows for a

lookup of the maximum in 𝑂 (1) time, and when updating the cost,

a deletion in amortized 𝑂 (1) and an insertion in logarithmic time.

Furthermore, for each node 𝑣 and processor 𝑝 , we explicitly store

the first superstep 𝑠 when node 𝑣 is required on processor 𝑝 (due

to one of 𝑣 ’s direct successors); due to the lazy communication

schedule, this implies that 𝑣 will be sent from 𝜋 (𝑣) to 𝑝 in superstep

(𝑠 − 1) (unless 𝑝 = 𝜋 (𝑣)). This ensures that whenever we consider
moving 𝑣 to a different processor, we can immediately identify

the communication steps that are affected by this change, and

hence we can efficiently compute the resulting change in the total

communication cost.

The list of valid moves in the search space (i.e. modification

options that still provide a valid BSP schedule) is also computed in

a preprocessing phase, and maintained throughout the algorithm;

when a node 𝑣 is moved to another processor and/or superstep, we

only need to update the possible move options for 𝑣 and its direct

predecessors/successors.

Together, these data structures ensure that in each step of HC,
we simply iterate through the list of valid move options, efficiently

check if any of them leads to an improvement, and apply the selected

move option, also updating our data structures efficiently.

The communication schedule hill climbing (HCcs) follows a very
similar approach. Note that this settings already considers the as-

signments 𝜋 and 𝜏 to be fixed. For each necessary communication

step (when 𝑣 needs to be sent from 𝜋 (𝑣) to 𝑝), this assignment natu-

rally defines an earliest and latest communication phase when this

transfer can happen: the earliest is 𝜏 (𝑣), and the latest is (𝑠0 − 1) for
the first superstep 𝑠0 that assigns a direct successor of 𝑣 to processor

𝑝 . Our HCcs method considers alternative communication sched-

ules with (𝑣, 𝜋 (𝑣), 𝑝, 𝑠) ∈ Γ for different possible 𝑠 ∈ [𝜏 (𝑣), 𝑠0 − 1].
As before, in each step, we consider a modification of selecting a

different such 𝑠 for only one of the required communication steps,

with the remaining communication steps in Γ unchanged. Note that

for simplicity, this setting implicitly assumes that the value of 𝑣 is

directly sent to 𝑝 from the processor 𝜋 (𝑣) where it was computed.

Similarly to HC, this hill climbing also uses sorted sets and external

pointers to efficiently maintain the send cost and receive cost of

each processor in every superstep.

For both hill climbing methods, there are two possible variants:

we either (i) always greedily apply the first modification step that

we find which decreases the cost, or (ii) we always consider all the

possible modifications from the current solution, and select the one

which decreases the cost by the largest amount. Our preliminary

experiments have shown that neither of these two approaches is

15

Pál András Papp, Georg Anegg, Aikaterini Karanasiou, and Albert-Jan N. Yzelman

clearly superior to the other in terms of the final schedule found;

however, the second method is much more time-consuming, since

there are usually numerous possible modification opportunities to

analyze from a given solution. Due to this, we have applied the

former, greedy variant of the approach in our experiments.

In our experiments, we allow the HC+HCcs methods to run for a

time limit of 5minutes on our main datasets, and for 30minutes on

the huge dataset. Given such a time limit, we always allocate 90%

of the allowed time to HC, and the remaining 10% to HCcs.

A.4 ILP-based methods
Our most sophisticated approach is the ILP-based solving of the

scheduling task or some of its subproblems.

The general approach to formulate the scheduling problem as

an ILP has already been outlined in [28]: our model here corre-

sponds to the submodel called FS by the authors of [28]. In this full

ILP representation, there is a binary variable comp𝑣,𝑝,𝑠 to indicate

whether node 𝑣 is computed on processor 𝑝 in superstep 𝑠 , and a

value pres𝑣,𝑝,𝑠 to indicate if the value of 𝑣 is already available on

𝑝 by the end of (the computational phase of) superstep 𝑠 . Besides

these, the communication steps are represented by binary variables

comm𝑣,𝑝1,𝑝2,𝑠 , indicating whether (𝑣, 𝑝1, 𝑝2, 𝑠) ∈ Γ. These variables
allow a natural way to express both the validity conditions of BSP

model (precedence constraints and valid communication steps) and

the elements of the cost functions with auxiliary variables; see [28]

for details. For our ILPfull method, we implement the representa-

tion above, with only minimal changes: we aggregate some of the

(originally separate) linear constraints into a single constraint, and

we replace the role of the explicit variables pres𝑣,𝑝,𝑠 by the unused

variables comm𝑣,𝑝,𝑝,𝑠 .

In our ILPcs method to optimize the communication schedule,

the main idea is similar to that of HCcs: we consider 𝜋 and 𝜏 already

fixed from the initial solution, and only try to optimize the neces-

sary communication steps in Γ. Once again, the assignment defines

an earliest superstep 𝜏 (𝑣) and a latest superstep (𝑠0 − 1) when we

can send a value 𝑣 from 𝜋 (𝑣) to 𝑝 if this is required. Hence for each

𝑠 ∈ [𝜏 (𝑣), 𝑠0 − 1], we define a binary variable comm𝑣,𝑝,𝑠 to indicate

whether the value is communicated in superstep 𝑠 . Note that simi-

larly to HCcs, this implicitly assumes that the value of 𝑣 is always

sent from 𝜋 (𝑣). Given these variables, the main techniques in the

ILPcs formulation are identical to ILPfull: we can use the same

approach to ensure with linear constraints that the communication

costs are measured properly, and that each communications step is

indeed scheduled to some superstep.

The ILPpart and ILPinit formulations are similar to each other

in the sense that they both only consider a particular subproblem (a

concrete subset of nodes𝑉0 and a concrete interval of supersteps 𝑆0),

and express this as an ILP. In ILPpart, we begin from a given subset

of supersteps 𝑆0: we split the BSP supersteps into disjoint intervals

(from back to front), and consider the nodes that are currently

assigned to the supersteps in 𝑆0 in order to obtain our 𝑉0. We form

these intervals iteratively, always growing the current interval until

|𝑉0 | · |𝑆0 | · 𝑃2 exceeds 4000; this is because the number of variables

in the ILP representation is in the magnitude of |𝑉0 | · |𝑆0 | · 𝑃2,
so we use this metric to estimate (and limit) the size of the ILP

problem obtained. In contrast to this, in case of ILPinit, we begin
with a topological ordering of the DAG, and always select the next

batch of nodes in this ordering as 𝑉0, and set 𝑆0 to cover the next

3 supersteps; once again, the number of nodes in each batch is

increased until |𝑉0 | · 3 · 𝑃2 exceeds a given threshold (2000 in this

case).

Note that given 𝑉0 and 𝑆0, the ILP formulation for ILPpart
and ILPinit are similar, but differ in the fact that in ILPpart, all
the nodes outside of 𝑉0 are already assigned to a processor and

superstep, whereas in ILPinit, the successors of the nodes in 𝑉0
are not assigned yet (hence we disregard them for the optimization).

For the ILP formulation of ILPpart and ILPinit, it is not sur-
prising that the variables comp𝑣,𝑝,𝑠 and comm𝑣,𝑝1,𝑝2,𝑠 are restricted

to 𝑣 ∈ 𝑉0 and 𝑠 ∈ 𝑆0. This already ensures that the ILP problem

is drastically smaller than ILPfull, since the number of variables

only scales with |𝑉0 | and |𝑆0 |, instead of 𝑛 and the total number of

supersteps. However, in these ILPs, there are several further design

decisions that allow us to reduce the number of required variables,

at the cost of some simple restrictions to the solution space:

• Some of the nodes 𝑣 ∈ 𝑉0 might have direct successors 𝑢

that are scheduled into supersteps after the interval 𝑆0. Let

𝜋 (𝑢) = 𝑝1. Then e.g. if we originally had 𝜋 (𝑣) = 𝑝1, but

the ILP solver sets 𝜋 (𝑣) = 𝑝2, then this results in a newly

required communication step; on the other hand, if we orig-

inally had 𝜋 (𝑣) = 𝑝2, but the ILP solver sets 𝜋 (𝑣) = 𝑝1, then

a previous communication step becomes unnecessary. Note

that these communication steps might either be within the

superstep interval 𝑆0, or after 𝑆0. In order to ensure that

our superstep formulation only scales with |𝑆0 | (instead
of also optimizing communications in supersteps after 𝑆0),

we choose to ignore the case when 𝑣 was originally com-

municated after 𝑆0: in this case, reassigning 𝑣 might make

this communication step unnecessary, and hence reduce

the cost of an ℎ-relation after 𝑆0, but we ignore this poten-

tial further gain in the ILP objective. On the other hand,

whenever 𝑣 is sent within 𝑆0, this is easily captured by our

formulation via the variables comm𝑣,𝑝,𝑝′,𝑠 . In particular, in

the last communication phase of 𝑆0, we only include the

variables comm𝑣,𝑝,𝑝′,𝑠 for processors 𝑝′ that require the

value of 𝑣 after 𝑆0, but for these processors, we also add

the constraint that 𝑣 indeed needs to be present on proces-

sor 𝑝′ by the end of 𝑆0. This ensures that our ILP indeed

captures the fact that the reassignment comes with newly

required communication steps; however, it limits our flex-

ibility by requiring that these new communication steps

need to happen until the end of 𝑆0.

• Some of the nodes 𝑣 ∈ 𝑉0 might also have direct prede-

cessors 𝑢 which are scheduled into supersteps before 𝑆0.

Similarly to the case of successors, if 𝑣 is rescheduled to a

different processor, then this might result in newly required

communication steps or previous communication steps

becoming unnecessary. As before, the ignore the poten-

tial gains from removable communication steps that were

scheduled before 𝑆0, in order to ensure that our ILP size

only scales with |𝑆0 |. Within 𝑆0, these communication steps

can once again be captured with variables comm𝑢,𝑝1,𝑝2,𝑠

as before; however, we also need to add such variables for

16

Efficient Multi-Processor Scheduling in Increasingly Realistic Models

the communication phase of the last superstep before 𝑆0.

Furthermore, note that the number of such predecessors

𝑢 can potentially be even larger than |𝑉0 |, hence if we add
these variables without consideration, they could notably

increase the size of the ILP. To avoid this problem in prac-

tice, we apply two simplifications. On the one hand, note

that Γ might ensure that the value of predecessor 𝑢 is al-

ready communicated to several processors 𝑝0 before 𝑆0;

since 𝑢 is always present on these processors throughout

𝑆0, we do not the add the variables comm𝑢,𝑝1,𝑝0,𝑠 in this

case, and we also disregard the precedence constraint (𝑢, 𝑣)
for comp𝑣,𝑝0,𝑠 (since they are satisfied anyway). On the

other hand, as before, we assume that the value of 𝑢 is di-

rectly sent from 𝜋 (𝑢) (which is fixed, since 𝑢 is computed

before 𝑆0) to any processor; this removes a factor 𝑃 from

the number of communication variables for 𝑢. Finally, note

that there may also be predecessors 𝑢 that have both an

out-neighbor 𝑣 ∈𝑉0 and an out-neighbor 𝑢′ scheduled after
𝑆0; in this case, if 𝑢 is originally sent to 𝜋 (𝑢′) during 𝑆0,

then we also need to add the constraint that the value of 𝑢

must still be present on 𝜋 (𝑢′) by the end of 𝑆0 in our ILP

solution.

• In our communication schedule Γ, we may also have com-

munication steps (𝑣, 𝑝1, 𝑝2, 𝑠) where 𝑣 was computed before

𝑆0, it is only required on 𝑝2 after 𝑆0, but our Γ still just hap-

pens to schedule it during the interval 𝑆0, even though 𝑣 has

no direct successor in 𝑉0. These communication steps have

no direct connection to the assignment of the nodes𝑉0, but

they still contribute to the communication costs in one of

the supersteps of 𝑆0. The number of these communication

steps can theoretically be as high as Θ(𝑛); hence if we in-
clude them as optimizable options in our ILP formulation,

then we may lose the advantage of only scaling with |𝑉0 |.
As such, we consider these communication steps fixed: the

communication costs they incur appear as a pre-computed

constant in the send and receive costs of the appropriate

processors in the given supersteps, unaffected by our choice

of the assignment for 𝑉0.

As mentioned before, we use the CBC open-source solver [7]

for solving the ILP problems described above. Since ILPfull tries

to solve the entire problem, we allow a larger time limit of 1 hour

when running this method. ILPcs also looks for a global solution,

but in a much more restricted problem, so we set its time limit to

5 minutes, similarly to HC+HCcs. We select an even shorter time

limit for ILPpart and ILPinit: 3minutes for the former, 2minutes

for the latter (since this is supposed to be an even faster heuristic

just for initialization). Even this way, ILPpart and ILPinit still

dominate the running time of the algorithms in our experiments,

since both of these are iterative methods that are repeatedly applied

on many different parts of the DAG or the schedule.

A.5 Multilevel approach
Our most novel algorithmic contribution is perhaps the application

of the multilevel coarsen-solve-refine technique, which is a state-of-

the-art approach in hypergraph partitioning tools [15, 31, 33, 37],

to the domain of scheduling problems. We develop and analyze a

simple variant of this multilevel scheduling approach for the case

when a scheduling problem is dominated by very high communica-

tion costs, since our other methods often fail to find high-quality

solutions in this case.

In the first phase of the multilevel algorithm, our goal is to grad-

ually coarsen the DAG into a significantly smaller representation

that captures most of the structure of the original DAG. For this,

we repeatedly contract a directed edge of the DAG into a single

node, combining all the incoming and outgoing edges of the two

nodes. Each such operation reduces the number of nodes by exactly

one, so a repeated execution of this procedure allows us to obtain a

coarsified DAG representation of any desired size.

In order to have a valid schedule that can be interpreted for

each intermediate step of the coarsening procedure, it is critical to

ensure that our graph indeed remains a DAG after each contraction

step. We ensure this by only selecting edges to contract in each

step that satisfy this property. In particular, an edge (𝑢, 𝑣) ∈ 𝐸 can

be contracted into a single node (without creating a directed cycle)

if and only if there is no other directed path in the DAG from 𝑢 to 𝑣

apart from the edge (𝑢, 𝑣). Note that there are always contractable
edges in a DAG: e.g. each non-sink node 𝑢 can be contracted with

its out-neighbor 𝑣 that appears earliest in a topological ordering,

since there can be no other directed path from 𝑢 to 𝑣 .

In our algorithm, we evaluate the contractable edges (𝑢, 𝑣) based
on two properties: (i) the total work weight 𝑤 (𝑢) +𝑤 (𝑣) that we
would obtain after contraction, which should be small to ensure

that no large cluster of nodes is forced onto the same processor

in the same superstep, and (ii) the communication weight 𝑐 (𝑢)
of the source node, which should preferably be large, since the

contraction step implies that the output of 𝑢 will not require a

communication step to be sent to 𝜋 (𝑣), at least not due to this

edge. In our implementation, we consider the following simple

technique: we sort the list of contractable edges in an increasing

order according to𝑤 (𝑢) +𝑤 (𝑣), and we always select from the first

1

3
of this list to ensure that we do not merge nodes with large work

weight. From this first part of the list, we select the edge with the

largest 𝑐 (𝑢) value.
Note that after the contraction step, we sum up both the work

weights and the communication weights of 𝑢 and 𝑣 to obtain the

weights for the contracted node. This is entirely appropriate for

work weights, since these are summed up on the same processor

and superstep anyway. For communication weights, this only gives

us an estimate (upper bound) on the actual communication require-

ments: if there is an edge (𝑢, 𝑣) in our coarsened DAG, then from

(possibly many) original nodes contracted into 𝑢, maybe only a few

had an actual edge to 𝑣 . This means that when a scheduling of the

coarse DAG sends the value of 𝑢 to 𝑣 , and computes the cost of this

based on summed weights 𝑐 (𝑢), then this is only an upper bound

on the amount of data that actually has to be communicated.

In our implementation of this coarsening phase, we find the list of

all contractable edges in the DAG in the beginning, and we update

this list after each contraction step. Note that after contracting

(𝑢, 𝑣), this does not only involve updating the edges incident to 𝑢

and 𝑣 : there might be edges arbitrarily far in the DAG that become

uncontractable after this step. In particular, if there is another edge

(𝑢′, 𝑣 ′) such that there is a long directed path from 𝑢 to 𝑣 ′, and

17

Pál András Papp, Georg Anegg, Aikaterini Karanasiou, and Albert-Jan N. Yzelman

another one from𝑢′ to 𝑣 , then both edges are contractable originally;
however, after contracting (𝑢, 𝑣), there will be a directed path from

𝑢′ to 𝑣 ′ via the contracted node, so this distant edge (𝑢′, 𝑣 ′) loses
its contractability.

In general, we note that in our implementation, each of the con-

traction steps are rather time-consuming, due to e.g. the need to

update the edges described above, and because we always iterate

through the list contractable edges to select the one with highest

𝑐 (𝑢); both of these operations can require 𝑂 (|𝐸 |) time for each

contraction step. This is not a problem in our work, since our more

complex scheduling methods require significantly more running

time anyway. However, it is an interesting question for future work

whether we can develop efficient coarsening techniques with sig-

nificantly smaller time complexity.

Another crucial question regarding the coarsening phase is the

optimal amount of coarsening that provides the best schedule in

the end. A too coarse DAG might not capture the overall structure

well enough, whereas an insufficient amount of coarsening might

not provide the advantages of the multilevel approach; in particular,

in our setting, it might not remedy the problem of excessively

high communication costs (i.e. that it is only beneficial to reassign

larger clusters of nodes simultaneously). This task of finding the

most favorable coarsening ratio is a very challenging and complex

problem on its own; investigating this in detail is far beyond the

scope of our paper. For our preliminary experiments to validate the

multilevel approach, we simply select two specific rates: we coarsen

the DAG to 30% and 15% of its original size, run the multilevel

approach for both of these cases, and out of the two schedules

obtained this way, we select the one with lower cost as the final

output of our multilevel scheduler.

We also note that our main question in this coarsening phase

was to obtain a significantly coarsened version of the DAG that

maintains the acyclic property. This general question has been

studied by multiple works in recent years [10, 31], but was mostly

evaluated as a partitioning problem in itself, rather than analyzed as

a tool for scheduling. The work of [27], as mentioned before, is an

exception to this, which has applied one of these acyclic partitioners

to further improve state-of-the-art list schedulers. However, in

contrast to our iterative coarsening procedure, this approach applies

a final acyclic partitioning; as such, it offers no straightforward way

to uncoarsen the DAG gradually, and hence there is no opportunity

to execute further refinement steps in a multilevel fashion in this

case.

The solving phase is the simplest part of the multilevel approach:

here we apply the algorithmic pipeline of Figure 3 on the coars-

ened DAG. In particular, recall that ILPfull is only applicable on

very small DAGs, and ILPpart is also significantly more useful on

smaller DAGs; as such, the multilevel approach allows us to also

apply these methods more successfully on DAGs that are originally

larger.

In the uncoarsening and refinement phase, we gradually undo

the contraction steps in a reverse order, thus moving closer and

closer to our original DAG. Every time after we execute a given

number of uncontraction steps, we refine the current schedule. That
is, we first project our current schedule (obtained from the solving

phase or the previous refinement step) into our current, slightly

more uncoarsened DAG: we assign each node to the same processor

and same superstep as its contracted counterpart. Note that since

the contracted graph was still a DAG, this still produces a valid

BSP schedule. However, the newly executed uncontraction steps

reveal slightly more of the structure of the original DAG, so we

can now fine-tune our schedule towards this. For this, we execute

several improvement steps with our local search method (HC) to
obtain a slightly more refined variant of our current schedule on

this slightly more coarsified version of the DAG.

In our experiments, we choose to refine the schedule after every

5 uncontraction steps, and we run HC for at most 100 steps (or until

a local minimum is reached). This makes the number of refinement

phases proportional to the number of contraction steps; alterna-

tively, one could also opt to only have a fixed number of refinement

phases altogether.

We also note that this uncoarsening phase (and hence the whole

multilevel approach) can be adapted much more naturally to BSP

than to classical models: if nodes are assinged to concrete starting

times instead of supersteps, then it is not immediately clear how

a schedule on a coarser DAG should be projected to a slightly

uncoarsened variant of the same DAG.

Recall that during the refinement steps, we only apply HC, but
not HCcs, since the (partially) coarsened DAG often overestimates

the required amount of communications (as it merges the weights

𝑐 (𝑣) in each cluster). Instead, HCcs and ILPcs are applied separately
on the original DAG after the uncoarsening has been finished.

Regarding the entire multilevel approach, we note that our im-

plementation is only a preliminary exploration of this idea, and

each element of this approach can be further improved to obtain a

more advanced version of this algorithm. In particular, analyzing

more complex DAG contraction methods, or refinement with more

advanced algorithms, or clever methods to estimate the optimal

coarsification factor are all promising directions for further im-

provement. We leave it to future work to investigate these more

sophisticated variants of the approach.

Finally, as a side note, we point at that the work of [27] also

applies the concept of Communication-to-Computation Ratio (CCR)

to capture the concept that a scheduling problem is dominated by

communication costs, i.e. when our multilevel algorithm seems

superior to other methods. In the work of [27], CCR was simply

defined as the ratio of

∑
𝑣∈𝑉 𝑐 (𝑣) and ∑

𝑣∈𝑉 𝑤 (𝑣). This metric is

not straightforward to generalize to our model with significantly

more parameters: multiplying the numerator with 𝑔 and also the

average NUMA coefficient

∑
𝜆𝑝

1
,𝑝
2

𝑃2
is a rather natural extension,

but it is not trivial to include e.g. the effect of the parameter ℓ in

this formula.

B DETAILS ON THE DAG DATABASE
This section discusses the details on our computational DAG data-

base. We note that the database itself (coarse grained instances, fine-

grained generator, some examples files and tools) are available at

https://github.com/Algebraic-Programming/HyperDAG_DB. The

test set of DAGs used in our experiments are available with the

remaining supplementary material in [1].

As noted before, the DAGs in our database are stored in a hy-

perDAG format, to be in line with the recent works of [29, 31].

18

https://github.com/Algebraic-Programming/HyperDAG_DB

Efficient Multi-Processor Scheduling in Increasingly Realistic Models

However, this difference is only relevant from a theoretical mod-

elling perspective, to emphasize the fact that even if a node 𝑣 has

multiple out-neighbors on another processor 𝑝 , its output only

needs to be sent to 𝑝 once; due to this, for partitioning problems, it

is more adequate to represent the output data of 𝑣 as a hyperedge,

containing 𝑣 and all its out-neighbors. For our work, this is simply

an alternative representation of the precedence constraints in the

DAG, and hence it has no effect. In fact, all of our algorithms begin

with the simple step of transforming these hyperDAGs back into a

regular DAG representation.

B.1 Coarse-grained DAGs
In order to obtain the coarse-grained representation of a variety of

computations, we considered the GraphBLAS implementation of

[45], and extended this with a so-called HyperDAG backend. The

goal of this backend is to run simultaneously to a regular Graph-

BLAS algorithm and gather meta-data during this run, which is then

used to generate the representation of the executed computation.

For this, the backend considers the various operation primitives

that are used as building blocks for the computations in Graph-

BLAS, and ensures that each of these primitives identifies the inputs

and outputs of the given operation, allowing us to reconstruct the

structure of the computational DAG.

This backend automatically allows us to extract the DAG repre-

sentation of a wide variety of algebraic computations implemented

in GraphBLAS. This involves common iterative methods for linear

solvers (e.g. Conjugate Gradient for positive definite systems, or

BiCGStab for general systems), graph algorithms that are naturally

expressible in an algebraic form (such as 𝑘-hop reachability, con-

nected components, or the PageRank algorithm), classical or more

advanced methods from machine learning (such as 𝑘-means, label

propagation or sparse neural network inference), and more. For

more details on the concrete GraphBLAS computations, we refer

the reader to [45]. We note that several of the algorithms above are

iterative methods; for these, we extract the corresponding compu-

tational DAGs both for a predefined small number of iterations (we

set this to 3), and for the case when the algorithm is running until

the iterative method converges.

We note that while larger containers (matrices, vectors) are easy

to track within a GraphBLAS algorithm, some simpler data struc-

tures, such as scalars, are not trivial to track without introducing

extensive changes to the algorithm implementations. Due to this,

our extraction from GraphBLAS sometimes provides an incomplete

DAG representation, leading to some isolated nodes or smaller iso-

lated components in the resulting DAG. To obtain the test DAGs

for our experiments, we simply consider the largest connected com-

ponent in each of the extracted DAGs; while this does not always

cover the entire GraphBLAS algorithm in question, it still repre-

sents a subDAG that corresponds to a valid (sub)computation, and

anyway captures most of the structure of the whole computation

in the majority of cases.

Note that assigning work weights 𝑤 (𝑣) and communication

weights 𝑐 (𝑣) to the nodes of the extracted DAG is a non-trivial

task: while the DAG structure of the computation is fixed for an

algorithm, the sizes of the matrices and vectors involved can be

arbitrary, based on the inputs in the concrete run. As such, for

simplicity, we assign 𝑤 (𝑣) = indeg(𝑣) − 1 to each node 𝑣 of the

DAG, where indeg(𝑣) is the indegree of 𝑣 : since the operation 𝑣

represents combining indeg(𝑣) distinct values, indeg(𝑣) − 1 is a

reasonable estimation for the workload this requires (consider e.g.

a summation or a multiplication). The only exception to this is

the source nodes of the DAG, where instead of setting 𝑤 (𝑣) = 0,

we still assign a work cost of 𝑤 (𝑣) = 1: while they correspond to

inputs of the computation, loading or initializing these values might

still require some computational resources. As for communication

weights, we uniformly assign a weight of 𝑐 (𝑣) = 1 to all nodes in

the coarse-grained DAG. We leave it to potential future work to

develop a way to assign more accurate weights to the nodes in

these extracted DAGs.

B.2 Fine-grained DAGs
In order to obtain fine-grained DAG representation of algebraic

computations, we have implemented a simple generator tool that

synthetically creates and outputs the computational DAG corre-

sponding to a few specific algebraic computations. Each of the four

computations depend on a square matrix 𝐴. In our experiments,

𝐴 is always defined by a size 𝑁 (number of rows/columns), and

a probability parameter 𝑞, such that each entry in the matrix is

nonzero independently with probability 𝑞. To construct computa-

tions from real-world matrices, the generator also has the option

to load input matrices (i.e. nonzero patterns) from a file, but this is

not used in our experiments.

Given this input matrix, our tool artificially creates the fine-

grained computational DAG corresponding to this matrix, with each

node describing a simple operation with a few nonzero values (e.g.

addition or multiplication of scalars). In particular, the generator

outputs DAGs corresponding to the following algorithms:

• spmv: multiplication of a sparse matrix 𝐴 with a dense vec-

tor 𝑢. An example for this operation is also shown in Figure

2.

• exp: an iterative version of spmv, i.e. given a sparse matrix

𝐴with a dense vector𝑢, the naive computation of the vector

𝐴𝑘 ·𝑢, by executing 𝑘 distinct spmv operations. This compu-

tation is an important building block of many applications.

• CG: the well-known conjugate gradient method for finding a

numerical solution to a system of linear equations, executed

for 𝑘 iterations.

• kNN: in GraphBLAS, this method refers to finding the nodes

in a graph that are at most 𝑘 hops away from a specific node

(in contrast tomachine learning, where𝑘-NN usually covers

a different concept). In terms of algebraic computations,

this can be represented as to the multiplication of sparse

matrix 𝐴 and a vector 𝑢 with a single non-zero entry, for 𝑘

iterations.

Besides 𝑁 and 𝑞, another defining parameter for the last three

algorithms is the number of iterations 𝑘 .

As before, the work weight is set to 1 for source nodes, and to

the indegree of the node minus 1 for all other nodes; this is indeed

realistic for our fine-grained DAGs, since e.g. the addition of 4

scalars indeed requires 3 addition operations. The communication

weights 𝑐 (𝑣) are again set to 1 for all nodes.

19

Pál András Papp, Georg Anegg, Aikaterini Karanasiou, and Albert-Jan N. Yzelman

Table 4: Number of times each initialization method is the
best, on spmv computations in the training set, separated for
different values of 𝑃 .

𝑃 = 4 𝑃 = 8 𝑃 = 16

Source: 5
BSPg: 3

ILPinit: 1

Source: 7
BSPg: 2

ILPinit: 0

Source: 7
BSPg: 2

ILPinit: 0

Table 5: Number of times each initialization method is the
best, on exp, cg and kNN computations in the training set,
separated for different values of 𝑃 and different DAG sizes.

𝑃 = 4 𝑃 = 8 𝑃 = 16

𝑛 ∈
[15, 120]

ILPinit: 6
Source: 0
BSPg: 0

ILPinit: 6
Source: 0
BSPg: 0

BSPg: 4
ILPinit: 1
Source: 1

𝑛 ∈
[200, 350]

ILPinit: 6
Source: 0
BSPg: 0

BSPg: 6
ILPinit: 0
Source: 0

BSPg: 6
ILPinit: 0
Source: 0

𝑛 ∈
[1000, 2000]

ILPinit: 6
BSPg: 3
Source: 0

BSPg: 9
ILPinit: 0
Source: 0

BSPg: 9
ILPinit: 0
Source: 0

B.3 Datasets for our experiments
To form our datasets, we generate fine-grained DAGs for different

𝑛 values, and we also strive to produce DAGs of different shape: e.g.

a higher number of iterations 𝑘 results in a deeper DAG (where the

longest path is longer), in contrast to a smaller 𝑘 , or in contrast to

spmv DAGs where no iterations happen at all, and the longest path

always has size only 3.

For the dataset used for the initial training, we create 10 fine-

grained instances, with 𝑛 ranging from 15 to 1950.

For the actual test datasets, we always specified an interval

for 𝑛 first ([40, 80] for tiny, [250, 500] for small, [1000, 2000] for
medium and [5000, 10000] for large), and we specifically created

a fine-grained DAG with each of the 4 methods in our generator

that is approximately in the beginning, middle, and end of this

interval. This results in 12 fine-grained DAGs for the tiny set. For

the remaining sets, there is a higher number of possible parameter

combinations to create DAGs in the interval; as such, with all the

iterative methods that allow more freedom to influence the depth

of the DAG (i.e. exp, cg and kNN), we create two different DAGs, a

deeper and a wider one, for the beginning, middle, and end of each

node interval. This results in 6 fine-grained DAGs with exp, cg and
kNN, and 3 fine-grained DAGs with spmv. Hence altogether, we have
21 fine-grained DAGs in the small, medium and large datasets.

Besides this, we also add to each dataset the coarse-grained

instances in our database where the number of nodes fits into the

defined interval. This adds 4 coarse-grained DAGs to the tiny
dataset, and 3 coarse-grained DAGs to the small dataset.

In order to create the huge dataset, we generate 7 fine-grained
instances with 𝑛 ∈ [50000, 100000]: one with spmv, and two with

each of the remaining algorithms.We then extend this with 3 coarse-

grained instances where 𝑛 is in a similar magnitude (one of the

instances only has 𝑛 = 47023, the other two are within the interval).

C DETAILS ON THE EXPERIMENTS
C.1 Comparison of initializers
We begin by discussing our preliminary runs on the training set

to evaluate the performance of the different initialization methods.

With the 10 training set DAGs and 9 parameter combinations from

𝑃 ∈ {4, 8, 16} and 𝑔 ∈ {1, 3, 5}, this amounts to 90 runs altogether.

During these runs, we found that each of our initialization meth-

ods can outperform the others. In particular, the best schedule

was returned by BSPg in 44 cases, by Source in 20 cases and by

ILPinit in 26 cases. Furthermore, we can observe that the relative

performance of the heuristics show a strong dependence on the

properties of the scheduling problem itself; in particular, on the

size of the DAG, the number of processors 𝑃 , and besides these,

also on the “shape” of the DAG: the shallow DAGs produced by

spmv computations behave rather differently from the rest of the

fine-grained DAGs.

In particular, Tables 4 and 5 show the number of times each

heuristic turned out to be the most successful, Table 4 for spmv

computations, and Table 5 for all other fine-grained instances com-

bined. Table 4 is separated according to 𝑃 , while Table 5 is separated

according to 𝑃 and 𝑛. There are several straightforward observa-

tions from these tables. On the one hand, it is clear that Source is
rather effective for the shallow spmv DAGs, but not very useful

otherwise. ILPinit performs well either for very small DAGs, or

for very small 𝑃 . Finally, BSPg consistently delivers good results for
most of the parameter combinations.

Since ILPinit is a very time-consuming initialization methods,

based on these observations, we decide to only run ILPinit for

problemswith 𝑃 = 4 processors in the experiments; this significantly

reduces the running time required for the experiments. Although

ILPinit is also often superior when 𝑛 is small, we do not apply it

in this case, since ILPfull and ILPiter can essentially fulfill the

same role for these problems. Since both BSPg and Source are very
fast heuristics with negligible running time compared to the other

elements in our framework, we apply both of them on every input

problem, regardless of the parameters.

C.2 Experiments without NUMA
The results of our experiments without NUMA effects have already

been outlined in Section 7. For completeness, here we provide a

table with the respective improvements for each combination of

𝑃 , 𝑔 and dataset, shown in Table 6. Note that each number in the

tiny, small, medium and large rows is still the average of 16, 24,
21 and 21 runs on different DAGs, respectively. This more detailed

table reveals some further details compared to Table 1; for instance,

while the cost reduction generally increases with larger 𝑃 , this in

fact only holds for the larger datasets, and the effect is in fact the

opposite for the tinyDAGs. It also shows that for the most extreme

subcase, our scheduler achieves almost a factor 2× improvement

with respect to HDagg, and well over a factor 2× improvement with

respect to Cilk, even in this non-NUMA setting.

20

Efficient Multi-Processor Scheduling in Increasingly Realistic Models

Table 6: Improvement achieved by our scheduler (without NUMA) for each combination of 𝑔, 𝑃 and dataset, with respect to Cilk
(first number in cell) and HDagg (second number in cell).

𝑔 = 1 𝑔 = 3 𝑔 = 5

𝑃 = 4 𝑃 = 8 𝑃 = 16 𝑃 = 4 𝑃 = 8 𝑃 = 16 𝑃 = 4 𝑃 = 8 𝑃 = 16

tiny 41%/34% 33%/28% 20%/16% 49%/43% 40%/36% 28%/26% 54%/49% 30%/36% 33%/32%

small 33%/23% 41%/25% 39%/20% 40%/28% 46%/31% 46%/30% 43%/30% 46%/32% 49%/35%

medium 31%/14% 43%/17% 53%/20% 38%/16% 47%/20% 56%/27% 42%/18% 47%/20% 58%/31%

large 27%/ 9% 41%/13% 53%/16% 34%/ 8% 46%/12% 56%/21% 38%/ 7% 46%/12% 58%/13%

Table 7: Ratio of costs achieved by our algorithms (similarly to Figure 5), for 𝑔 = 5, on the different datasets.

BL-EST ETF Cilk HDagg Init HCcs ILPpart ILPcs

tiny 1.126 0.883 1 0.943 0.728 0.619 0.57 0.569

small 1.54 1.073 1 0.791 0.66 0.579 0.556 0.539

medium 1.896 1.254 1 0.658 0.592 0.542 0.529 0.506

large 2.142 1.517 1 0.609 0.591 0.547 0.542 0.521

Table 8: Cost reduction achieved by our scheduler compared
to ETF on the tiny dataset, for each combination of 𝑔 and 𝑃 ,
without NUMA.

𝑔 = 1 𝑔 = 3 𝑔 = 5

𝑃 = 4 38% 43% 46%

𝑃 = 8 33% 31% 32%

𝑃 = 16 22% 27% 28%

Table 9: Cost reduction achieved by our scheduler for dif-
ferent values of ℓ , on the medium dataset for 𝑔 = 1 and 𝑃 = 8

(compared to Cilk/HDagg).

ℓ = 2 ℓ = 5 ℓ = 10 ℓ = 20

38% / 16% 43% / 17% 50% / 19% 58% / 21%

In order to better understand the different ILP methods, we show

the performance of each algorithm on the datasets for 𝑔 = 5 (and all

of 𝑃 ∈ {4, 8, 16}) in Table 7, with the ratios normalized to Cilk as in
our figures before. The ILPpart column shows the relative cost of

the schedule after running ILPfull and ILPpart, whereas ILPcs
shows the final schedule after also running ILPcs. The table shows
that in the tiny dataset, ILPfull/ILPpart has a significant effect,

decreasing the mean ratio from 0.619 to 0.569, which amounts to a

8% cost decrease from 0.619. As 𝑛 grows larger, the improvement

achieved by these methods becomes less significant. In contrast to

this, ILPcs only achieves a minimal improvement on the smaller

dataset, but it is more impressive when 𝑛 is larger: it decreases the

ratio from 0.529 to 0.506 on medium and from 0.542 to 0.521 on

large (4% improvement in both cases). This suggests that ILPpart
and ILPcs excel in different situations, and hence they are both

valuable ingredients in our scheduler.

The table also contains our other academic baselines, ETF and
BL-EST. The data shows that as 𝑛 grows, even Cilk becomes more

superior to both ETF and BL-EST. Also, both ETF and BL-EST are

significantly outperformed by HDagg, except for a single case: ETF
performs better than HDagg on the tiny dataset. Since ETF is the
strongest baseline altogether for this specific dataset, for complete-

ness, we also show the cost improvement of our scheduler on the

tiny dataset compared to ETF in Table 8. The table shows that

our scheduler is also consistently superior to ETF by a significant

margin.

C.3 The role of latency
So far, we always had a fixed choice of ℓ = 5 in our scheduling

problems. As such, we also run a small experiment to investigate

the effect of the parameter ℓ on our schedules. For this, we consider

the medium dataset, with a choice of 𝑔 = 1 (to ensure that communi-

cation costs are dominated by ℓ) and 𝑃 = 8. We investigate different

values for the latency in this setting: ℓ ∈ {2, 5, 10, 20}.
We show the improvement achieved by our scheduler for each

of these cases in Table 9. The table shows that similarly to 𝑔, the

improvement increases for larger values of ℓ . However, in contrast

to 𝑔, the latency needs to be set to much larger numerical values in

order for this tendency to become clearly noticeable.

21

Pál András Papp, Georg Anegg, Aikaterini Karanasiou, and Albert-Jan N. Yzelman

Cilk HDagg Init HCcs
0

0.5

1

𝑃 = 4

Cilk HDagg Init HCcs
0

0.5

1

𝑃 = 8

Cilk HDagg Init HCcs
0

0.5

1

𝑃 = 16

Figure 7: Improvement achieved by the initialization methods and the local search algorithm on the huge dataset, separated
according to the value of 𝑃 .

C.4 Experiments with NUMA
In our experiments with NUMA effects, we only considered 𝑃 = 8

and 𝑃 = 16 for the number of processors, since even as a binary

tree, 𝑃 = 4 gives a very shallow hierarchy with only two levels.

Similarly, we only considered 𝑔 = 1, since with 𝑃 = 16 and Δ = 4,

this already gives a coefficient as high as Δ3 = 64 between pairs

of processors that are only connected over the highest level of the

hierarchy. As before, we set ℓ = 5. For the NUMA multiplier, we

consider the values Δ ∈ {2, 3, 4}. Generally, as 𝑛 grows larger, the

improvement with respect to HDagg typically get smaller, whereas

the improvement with respect to Cilk does not show such a clear

pattern in terms of 𝑛.

The improvements achieved by our scheduler, separated accord-

ing to 𝑃 , Δ and the dataset, are shown in Table 10. The table con-

firms that the improvement achieved by our scheduler grows with a

larger 𝑃 and Δ, and this general rule holds consistently for all cases

in all of the datasets, i.e. regardless of 𝑛. Compared to Cilk, the
difference between the parameter combinations is most significant

in the tiny dataset: the smallest and largest improvement is both

achieved in this dataset.

Recall that the same results are aggregated over the different

dataset (for each 𝑃 and Δ) in Table 2. Finally, combined over all

datasets and all values of 𝑃 and Δ, the mean improvement is 60%

and 43% compared to Cilk and HDagg, respectively. We note that

ETF and BL-EST are also clearly inferior in this setting with NUMA

effects: on all datasets combined, they returns a schedule that is on

average 4% and 41% worse, respectively, than even Cilk.

C.5 The huge dataset
Our results on the huge dataset without NUMA effects are shown

in Table 11, for separate values of 𝑃 and 𝑔. As mentioned before in

Section 7, the improvement compared to Cilk ranges from 15% to

41%, and the improvement to HDagg ranges from 6% to 13%.

To also see the amount of improvement we can attribute to the

initializers and to HC+HCcs, we illustrate the improvement in Figure

7. This shows that the initializers achieve a 15%, 22% and 32% cost

reduction compared to Cilk (for 𝑃 = 4, 8, 16, respectively). The

local search methods then further improve this by 7%, 8% and 10%

(for 𝑃 = 4, 8, 16, respectively) compared to Init. Hence even for

these much larger DAGs, without applying our ILP-based methods,

our schedulers achieve a rather significant improvement to Cilk,
especially for higher 𝑃 values. When compared to HDagg, we see
that Init is approximately on par with this baseline, and altogether,

Init+HC+HCcs provides an improvement of 11%, 7% and 11% (for

𝑃 = 4, 8, 16, respectively). We leave it to future work to improve

the scaling of our algorithms, to ensure that they are also superior

to HDagg by a more significant margin for DAGs of this size.

The results on the huge dataset with NUMA effects are mostly

similar; these are shown in Table 12, separated according to 𝑃 and

Δ. The improvement here ranges from 30% to 48% compared to

Cilk, and 7% to 21% compared to HDagg. As such, similarly to the

smaller dataset, the improvements become larger when we have

NUMA effects; however, the difference between our scheduler and

HDagg still remains relatively small in several of the cases.

C.6 Multilevel scheduling
We primarily experiment with our multilevel scheduler in the set-

tings where the communication costs are high; in our case, this

mostly means the setting with NUMA effects. In our experiments,

we only consider the multilevel scheduler on the small, medium
and large datasets, since coarsening the DAGs in tiny would lead

to an absurdly small DAG representation with as few as 6 nodes in

the most extreme case.

Note that if the communication costs are very high in general

(such as with NUMA), then finding a good schedule becomes a

very challenging task: intuitively, it is only beneficial to assign two

parts of the DAG to separate processors if the relative size of these

parts is much larger than the number of edges going between them,

otherwise the corresponding communication steps result in more

extra cost than what we gain from the parallel execution of the

subtasks. In particular, when we have high NUMA costs in our

model, it can happen in our experiments that the best solution

found by both the baseline methods and our scheduler is in fact

more costly than the trivial solution of assigning the entire DAG to

a single processor and single superstep. This clearly shows that the

schedulers (both the baselines and ours) fail to find any reasonable

schedule in this case. In particular, with very high communication

cost parameters, it is not even clear at first whether a solution

of lower cost even exists (just not found by our schedulers), or

22

Efficient Multi-Processor Scheduling in Increasingly Realistic Models

Table 10: Improvement achieved by our scheduler (with NUMA) for each combination of 𝑃 , Δ and dataset, with respect to Cilk
(first number) and HDagg (second number), for a fixed choice of 𝑔 = 1 (and ℓ = 5).

𝑃 = 8 𝑃 = 16

Δ = 2 Δ = 3 Δ = 4 Δ = 2 Δ = 3 Δ = 4

tiny 43% / 39% 57% / 54% 66% / 64% 45% / 45% 68% / 68% 77% / 78%

small 48% / 31% 55% / 40% 60% / 47% 55% / 38% 66% / 52% 71% / 59%

medium 50% / 23% 55% / 30% 58% / 35% 61% / 34% 67% / 44% 69% / 49%

large 49% / 14% 54% / 18% 57% / 20% 61% / 28% 67% / 38% 69% / 42%

Table 11: Cost reduction achieved by Init+HC+HCcs on the
huge dataset without NUMA, compared to Cilk/HDagg.

𝑔 = 1 𝑔 = 3 𝑔 = 5

𝑃 = 4 15% / 9% 22% / 12% 26% / 13%

𝑃 = 8 24% / 7% 30% / 6 % 30% / 7%

𝑃 = 16 35% / 9% 39% / 11% 41% / 13%

Table 12: Cost reduction achieved by Init+HC+HCcs on the
huge dataset with NUMA, compared to Cilk/HDagg.

Δ = 2 Δ = 3 Δ = 4

𝑃 = 8 30% / 7% 34% / 7% 37% / 7%

𝑃 = 16 41% / 12% 45% / 16% 48% / 21%

whether the trivial solution mentioned above is in fact the optimal

schedule in these problems.

Our multilevel algorithm answers this question, demonstrating

that an approach designed especially for this communication-heavy

case can find a solution with lower than the trivial cost even in

this very challenging setting. In particular, over all experiments

with NUMA costs (𝑃 ∈ {8, 16}, Δ ∈ {2, 3, 4}), there were as many as

114 out of 396 cases where our base scheduler (and the baselines)

could not find a solution with lower than trivial cost; however, with

the application of the multilevel algorithm, the number of such

cases was only 8 out of 396. These numbers are understood over all

datasets except tiny (where multilevel scheduling was not applied,

and hence it cannot be included in this comparison). This shows

that even our relatively simple implementation of this multilevel

idea can indeed very nicely fill the specialist role of scheduling

these kind of problems.

The concrete improvement factors achieved by our multilevel

algorithm (separately for 𝑃 ∈ {8, 16}, Δ ∈ {2, 3, 4}) are shown in

Table 13 with respect to the baselines, and in Table 14 with respect

to our (non-multilevel) scheduling framework. The tables show

that compared to the baselines, the multilevel approach can achieve

a cost reduction of up to 87% and 79% in the most extreme case

(with respect to Cilk/HDagg), which is more than a factor 7.7×
improvement from Cilk and more than a factor 4.7× from HDagg.
When compared to our base scheduling framework, the multilevel

approach clearly remains inferior when Δ = 2, it is approximately

equally strong when Δ = 2 and 𝑃 = 8, and is clearly superior when

we have Δ = 3 and 𝑃 = 16, or Δ = 4. For the most extreme case of

Δ = 4 and 𝑃 = 16, it provides another more than 2× improvement

compared to the base scheduling framework.

Note that the tables are split into multiple rows based on whether

we use the approach with a coarsification factor of 0.15 or 0.3, or

whether we run both and select the better out of the two schedules.

The table shows that applying and comparing both coarsifications

indeed leads to some further improvement over the single-ratio

approach. In case if we prefer running the multilevel approach with

only a single ratio, 0.3 seems to be the clearly superior choice from

the two.

In contrast to these cases, whenwe apply themultilevel scheduler

to settings with lower communication costs, it typically provides

weaker schedules than our base scheduling approach. This was

already indicated before by the case of Δ = 2 in Table 14. In our

setting without NUMA, the difference is even larger: for instance,

the mean ratio of the multilevel algorithm to our base scheduler is

1.246 for a choice of 𝑃 = 8 and 𝑔 = 3, and 1.515 for a choice of 𝑃 = 16

and 𝑔 = 1 (still understood over all datasets except tiny). While

these ratios imply that the multilevel approach is still somewhat

better than Cilk (and even marginally better than HDagg in the

𝑃 = 8, 𝑔 = 3 case), altogether, it is clearly inferior to our base

scheduler. This suggests that our current implementation of the

multilevel method can indeed be understood as a specialized tool

for the case when communication costs are really dominant in the

scheduling problem.

However, we believe that with further polishing, the multilevel

approach can be improved to find a favorable coarsification ratio by

itself (intuitively, to decide if coarsification is even necessary, or in

a more advanced case, on which parts of the DAG it is necessary),

and hence it can become a technique that provides high-quality

schedules on all problems, regardless of input parameters. We be-

lieve that this is one of the most promising directions for future

work in this topic.

23

Pál András Papp, Georg Anegg, Aikaterini Karanasiou, and Albert-Jan N. Yzelman

Table 13: Cost reduction achieved by the multilevel scheduler in case of NUMAwith respect to Cilk/HDagg, for each combination
of 𝑃 and Δ, on the combination of all datasets except tiny, for a fixed choice of 𝑔 = 1 (and ℓ = 5). The rows C15 and C30 show the
result obtained when running the multilevel algorithm with a coarsification factor of 15% and 30%, respectively, while the C𝑜𝑝𝑡
row denotes the variant when we run both of these algorithms, and select the schedule of lower cost from the two outputs.

𝑃 = 8 𝑃 = 16

Δ = 2 Δ = 3 Δ = 4 Δ = 2 Δ = 3 Δ = 4

C15 31% / −3% 48% / 21% 63% / 41% 47% / 14% 73% / 56% 85% / 75%

C30 39% / 9% 54% / 29% 64% / 44% 53% / 24% 74% / 58% 85% / 75%

C𝑜𝑝𝑡 40% / 10% 56% / 32% 67% / 48% 54% / 26% 76% / 61% 87% / 79%

Table 14: Improvement factor achieved by the multilevel scheduler with respect to our base scheduler (the framework of Figure
3), in the same setting as described in Table 13.

𝑃 = 8 𝑃 = 16

Δ = 2 Δ = 3 Δ = 4 Δ = 2 Δ = 3 Δ = 4

C15 1.353 1.136 0.912 1.291 0.813 0.506

C30 1.195 1.014 0.871 1.141 0.774 0.502

C𝑜𝑝𝑡 1.179 0.979 0.812 1.122 0.711 0.429

24

	Abstract
	1 Introduction
	2 Related Work
	3 Problem definition and background
	3.1 Preliminaries
	3.2 The BSP model
	3.3 Cost in BSP
	3.4 NUMA effects
	3.5 Problem definition

	4 Scheduling algorithms
	4.1 Baselines
	4.2 Initialization heuristics
	4.3 Local search algorithm
	4.4 ILP-based approach
	4.5 Multilevel approach

	5 Computational DAG database
	6 Experimental Setup
	7 Empirical Results
	7.1 Without NUMA
	7.2 With NUMA effects
	7.3 Multilevel scheduling

	8 Conclusion
	Acknowledgments
	References
	A Details on our algorithms
	A.1 Baseline methods
	A.2 Initialization heuristics
	A.3 Local search
	A.4 ILP-based methods
	A.5 Multilevel approach

	B Details on the DAG Database
	B.1 Coarse-grained DAGs
	B.2 Fine-grained DAGs
	B.3 Datasets for our experiments

	C Details on the Experiments
	C.1 Comparison of initializers
	C.2 Experiments without NUMA
	C.3 The role of latency
	C.4 Experiments with NUMA
	C.5 The huge dataset
	C.6 Multilevel scheduling

