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Links and resources

Scheduling algorithms

• Several initializers for initial schedule

• Hill climbing local search (HC) to improve solutions

• ILP-based schedulers:

▪ ILPfull: entire problem as ILP (limited to small DAGs)

▪ ILPpart: iteratively improve smaller parts of schedule

▪ ILPcs: capture subproblem of communication scheduling

• Multilevel scheduling algorithm:

▪ coarsen into much smaller DAGs, retaining structure

▪ find BSP schedule for coarse DAG

▪ iteratively uncoarsen, and refine in each step with HC

Database of computational DAGs

• DAGs from various areas: algebraic programming 

applications, machine learning, graph algorithms

• Fine-grained DAGs of sparse computations

• For our experiments, and as a future benchmark
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BSP model for DAG scheduling

• Supersteps with computation and communication phases

• Offers a realistic cost for any computational DAG

▪ extended with hierarchical NUMA effects

Our schedulers

https://github.com/Alg

ebraic-Programming/

OneStopParallel

Full paper

https://arxiv.org/

abs/2404.15246improvement ratio on 66 DAGs from our database, normalized to Cilk

Model-based evaluation

• Extensive comparison to Cilk, ETF and HDagg baselines

Main Objective

Designing optimal scheduling tools in realistic models

Our work focuses on

• scheduling algorithms in more realistic models

• algorithms to schedule any computational DAG

• finding optimal or close-to-optimal schedules

Run-time evaluation (SpTRSV): 

• 48% (22 cores) and 45% (44 cores) faster than HDagg

• up to 6.5x (22 cores) and 7.8x (44 cores) faster

Results

Model-based evaluation (BSP): 

• 24% (UMA) and 43% (NUMA) faster than HDagg

• up to 4.5x faster for some machine parameters

DAG database

https://github.com/Alg

ebraic-Programming/

HyperDAG_DB
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speedup on 33 DAGs from HDagg evaluation dataset, on Xeon Gold 6238T,

44 cores, 192 GB memory, and theoretical peak memory throughput 262.2 GB/s

* BSPg with the HDagg coarsener
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Run-time evaluation

• Speeding up sparse triangular solvers via scheduling

• Baseline: HDagg-accelerated SpTRSV

• Using faster & improved versions of our schedulers

▪ time complexity identical to HDagg


