
BSPg H+BSPg*

Efficient Multi-Processor Scheduling in Increasingly Realistic Models
P. A. Papp, G. Anegg, A. Karanasiou and A. N. Yzelman, with ongoing work by T. Böhnlein, R. S. Steiner and B. Lozes

{pal.andras.papp, albertjan.yzelman}@huawei.com

Huawei Zurich Research Center

Links and resources

Scheduling algorithms

• Several initializers for initial schedule

• Hill climbing local search (HC) to improve solutions

• ILP-based schedulers:

▪ ILPfull: entire problem as ILP (limited to small DAGs)

▪ ILPpart: iteratively improve smaller parts of schedule

▪ ILPcs: capture subproblem of communication scheduling

• Multilevel scheduling algorithm:

▪ coarsen into much smaller DAGs, retaining structure

▪ find BSP schedule for coarse DAG

▪ iteratively uncoarsen, and refine in each step with HC

Database of computational DAGs

• DAGs from various areas: algebraic programming 

applications, machine learning, graph algorithms

• Fine-grained DAGs of sparse computations

• For our experiments, and as a future benchmark

iteratively 
coarsen DAG

scheduling problem
(DAG + parameters)

uncoarsen 
and refine

base scheduler

HC

schedule

BSPg

scheduling problem
(DAG + parameters)

schedule

Source ILPinit

HC HCHC

select best

very small DAGs larger DAGs

ILPpart

ILPcs

multilevel schedulerbase scheduler framework

initializers

local search

ILP-based
ILPfull

BSP model for DAG scheduling

• Supersteps with computation and communication phases

• Offers a realistic cost for any computational DAG

▪ extended with hierarchical NUMA effects

Our schedulers

https://github.com/Alg

ebraic-Programming/

OneStopParallel

Full paper

https://arxiv.org/

abs/2404.15246improvement ratio on 66 DAGs from our database, normalized to Cilk

Model-based evaluation

• Extensive comparison to Cilk, ETF and HDagg baselines

Main Objective

Designing optimal scheduling tools in realistic models

Our work focuses on

• scheduling algorithms in more realistic models

• algorithms to schedule any computational DAG

• finding optimal or close-to-optimal schedules

Run-time evaluation (SpTRSV): 

• 48% (22 cores) and 45% (44 cores) faster than HDagg

• up to 6.5x (22 cores) and 7.8x (44 cores) faster

Results

Model-based evaluation (BSP): 

• 24% (UMA) and 43% (NUMA) faster than HDagg

• up to 4.5x faster for some machine parameters

DAG database

https://github.com/Alg

ebraic-Programming/

HyperDAG_DB

core/ 
CPU

…

CCCC

Network / memory Network

RAM RAM

C
P

U

C
P

U

… …

core/ 
CPU

core/ 
CPU

uniform send costs non-uniform (hierarchical)

speedup on 33 DAGs from HDagg evaluation dataset, on Xeon Gold 6238T,

44 cores, 192 GB memory, and theoretical peak memory throughput 262.2 GB/s

* BSPg with the HDagg coarsener

1

22 cores (single socket) 44 cores (dual socket)

4

BSPg H+BSPg*

2

8

c
o

re
 1

 
c
o

re
 2

 

comp. comm.

c
o

re
 3

superstep 1 superstep 2 superstep 3 

comp. comm. comp. comm.

1

4

2

8

Run-time evaluation

• Speeding up sparse triangular solvers via scheduling

• Baseline: HDagg-accelerated SpTRSV

• Using faster & improved versions of our schedulers

▪ time complexity identical to HDagg


