
DAG Scheduling in the BSP Model
Pál András Papp #

Computing Systems Lab, Huawei Zurich Research Center

Georg Anegg #

Computing Systems Lab, Huawei Zurich Research Center

Albert-Jan N. Yzelman #

Computing Systems Lab, Huawei Zurich Research Center

Abstract
We study the problem of scheduling an arbitrary computational DAG on a fixed number of processors
while minimizing the makespan. While previous works have mostly studied this problem in fairly
restricted models, we define and analyze DAG scheduling in the Bulk Synchronous Parallel (BSP)
model, which is a well-established parallel computing model that captures the communication cost
between processors much more accurately. We provide a taxonomy of simpler scheduling models that
can be understood as variants or special cases of BSP, and discuss how the properties and optimum
cost of these models relate to BSP. This essentially allows us to dissect the different building blocks
of the BSP model, and gain insight into how these influence the scheduling problem.

We then analyze the hardness of DAG scheduling in BSP in detail. We show that the problem
is solvable in polynomial time for some very simple classes of DAGs, but it is already NP-hard
for in-trees or DAGs of height 2. We also prove that in general DAGs, the problem is APX-hard:
it cannot be approximated to a (1 + ϵ)-factor in polynomial time for some specific ϵ > 0. We
then separately study the subproblem of scheduling communication steps, and we show that the
NP-hardness of this problem depends on the problem parameters and the communication rules
within the BSP model. Finally, we present and analyze a natural formulation of our scheduling task
as an Integer Linear Program.

2012 ACM Subject Classification Theory of computation → Parallel computing models; Theory of
computation → Problems, reductions and completeness

Keywords and phrases Bulk synchronous parallel, scheduling, NP-hard, Integer Linear Programming

1 Introduction

The optimal scheduling of complex workloads is a fundamental problem not only in computer
science, but also in other areas like logistics or operations research. In a computational
context, the most natural application of scheduling is when we have a complex computation
consisting of many different subtasks, and we want to execute this on a parallel (multi-
processor or multi-core) architecture, while minimizing the total time required for this.
Unsurprisingly, this topic has been extensively studied since the 1960s, and has gained even
more importance recently with the widespread use of manycore architectures.

In these scheduling problems, a computational task is represented as a Directed Acyclic
Graph (DAG), where each node corresponds to an operation or subtask, and each directed
edge (u, v) indicates a dependency relation, i.e. that the processing of node u has to be
finished before the processing of node v begins, since the output of operation u is needed as
an input for operation v. This DAG model of general computations is not only prominent in
scheduling, but also in further topics such as pebbling.

However, from a complexity-theoretic perspective, the scheduling of general DAGs is
already a hard problem even in very simple settings, e.g. even in models that heavily
simplify or completely ignore the communication costs between processors, which is the main
bottleneck in many computational tasks in practice. Due to this, previous theoretical works
have mostly focused on analyzing the complexity of scheduling in these rather simple models,

ar
X

iv
:2

30
3.

05
98

9v
2

 [
cs

.C
C

]
 1

6
Ju

l 2
02

4

mailto:pal.andras.papp@huawei.com
mailto:georg.anegg@huawei.com
mailto:albertjan.yzelman@huawei.com

2 DAG Scheduling in the BSP Model

and while more realistic models were sometimes introduced, the theoretical properties of
scheduling in these more realistic models received little attention.

On the other hand, the parallel computing community has developed far more sophisticated
models to accurately quantify the real cost of parallel algorithms in practice. One of the
most notable among these is the Bulk Synchronous Parallel (BSP) model, which is still
relatively simple, but provides a delicate cost function that also captures the volume of
communicated data and the synchronization costs in a given parallel schedule. BSP (and
other similar models) are fundamental tools for evaluating and comparing concrete practical
implementations of parallel algorithms. However, previous theoretical works on BSP only
focus on finding and analyzing parallel schedules for specific algorithms, and do not study
BSP as a model for scheduling general DAGs, i.e. an arbitrary computational task.

Our goal in this paper is to bridge this gap between theory and practice to some extent,
and understand the fundamental theoretical properties of DAG scheduling in the BSP model.
This more detailed model results in a more complex scheduling problem with some entirely
new aspects compared to classical models; as such, understanding its key properties is a
crucial step towards designing efficient parallel schedules for computations in practice. Our
hope is that our insights can inspire a new line of work, focusing on the theoretical study of
scheduling in more advanced parallel computing models that are developed and applied on
the practical side. More specifically, our main contributions are as follows:
(i) We first define DAG scheduling in the BSP model. We then provide a taxonomy of

scheduling models from previous works, and show that many of these can be understood
as a special case of BSP. Analyzing the relations between these models essentially allows
us to gain insight into how the different aspects of BSP affect the scheduling problem.

(ii) We then analyze the complexity of the BSP DAG scheduling problem, with the goal of
understanding when (i.e. for which kind of DAGs) the problem becomes NP-hard. Our
results show that BSP scheduling is still solvable in polynomial time for simple DAGs that
consist of several connected chains, but it is already NP-hard for slightly more complex
classes of DAGs, such as in-trees or DAGs of height 2.

(iii) We show that for general DAGs, the problem is NP-hard to even approximate to a (1 + ϵ)
factor, for some constant ϵ > 0. In order words, BSP scheduling is APX-hard, and does
not allow a polynomial-time approximation scheme unless P=NP.

(iv) We separately analyze the subproblem of scheduling communication steps, assuming that
the assignment of tasks to processors and so-called supersteps is already fixed. We discuss
the complexity of this subproblem for several different variants of BSP.

(v) Finally, we present and analyze a natural formulation of the BSP scheduling task as an
Integer Linear Programming (ILP) problem.

Our main technical contributions correspond to points (ii)–(iv) above; however, the remaining
points also provide valuable insight into different properties of the problem.

2 Related work

Scheduling is a fundamental problems in computer science, and has been studied extensively
since the 1970s. DAGs are one of the most common models for such problems, since in many
applications, the subtasks or computation steps have precedence relations between them.

The first results on DAG scheduling considered a simple setting where communication
between the processors is free, which essentially corresponds to the PRAM model. The
numerous results in this model include polynomial algorithms for P = 2 processors [8, 53, 17],

P. A. Papp, G. Anegg and A. N. Yzelman 3

polynomial algorithms for special classes of DAGs (but P > 2) [19, 14, 13], hardness results
for P =∞ [59, 6, 32], and results for weighted DAGs [31, 44, 7]. The results on some of these
topics, e.g. approximation algorithms, are still rapidly improving in recent years [56, 35, 20, 37].
On the other hand, some basic questions are still open even in this fundamental model: e.g.
it is still not known whether scheduling for some fixed P > 2 is NP-hard.

A more realistic version of this model was introduced in the late 1980s [47, 63], where there
is a fixed communication delay between processors. There are also numerous algorithms and
hardness results for this setting, in particular for unit-length delays [24, 26] or infinitely many
processors [40, 26, 45]. The approximability of the optimal solution is also a central question
in this model that receives significant attention even in recent years [30, 38, 11, 39, 10].

This communication delay model is still unrealistic in the sense that it allows an unlimited
amount of data to be communicated in a single time unit. To our knowledge, the only
more sophisticated DAG scheduling model which measures communication volume is the
recently introduced single-port duplex model [46]. However, this model has not been studied
before from a theoretical perspective, and in contrast to BSP, it cannot be extended by some
real-world aspects such as synchronization costs.

There are also numerous extensions of these models with further aspects, e.g. heterogeneous
processors, jobs requiring several processors, or deadlines for each task [33, 34, 57, 36, 12, 50].

On the other hand, BSP has been introduced as a prominent model of parallel computing in
1990 [60], and studied extensively ever since [41, 5, 55]. The model has also found its way into
various applications, most notably through the BSPlib standard library [25] and its different
implementations [65, 64]. Fundamental results on BSP include the analysis of prominent
algorithms in this model [42, 43] or the extension of BSP to multi-level architectures [61,
62]. However, the BSP model (and similar models with even more parameters, such as
LogP [9]) have mostly been used so far to analyze the computational costs of specific parallel
implementations of concrete algorithms. In contrast to this, in our work, we apply BSP as a
general model to evaluate the scheduling of any computational DAG.

3 Models and definitions

Computational tasks are modelled as a Directed Acyclic Graph G, with the set of nodes
(subtasks) denoted by V , and the set of directed edges (dependencies) by E. We use u and
v to denote individual nodes, and n to denote the number of nodes |V |. An edge (u, v)
indicates that subtask u has to be finished before the computation of subtask v begins. We
also use [k] as a shorthand notation for the integer set {1, ..., k}.

For scheduling, we assume that we have P ∈ O(1) identical processors, and our goal is to
execute all nodes of G on these, while minimizing the total amount of time this takes.

The BSP model. BSP is a very popular model for the design and evaluation of parallel
algorithms. To our knowledge, general DAG scheduling has not been studied in this model
before, but extending the interpretation of BSP to this setting is rather straightforward.

In contrast to classical models where nodes are assigned to concrete points in time, the
BSP model instead divides the execution of nodes into larger batches, so-called supersteps.
Each superstep consists of two phases, in the following order:
1. Computation phase: each processor may execute an arbitrary number of computation

steps, but no communication between the processors is allowed.
2. Communication phase: processors can communicate an arbitrary number of values to each

other, but no computation is executed.

4 DAG Scheduling in the BSP Model

The main motivation behind supersteps is to encourage executing the necessary communica-
tions in large batches, since in practice, inter-processor communication often has a large fixed
cost (e.g. synchronization, network initialization) that is independent of the data volume.

Formal definition. We denote the number of supersteps in our schedule by S. While S

is not a parameter of the problem and can be freely chosen in a schedule, we provide our
definitions for a fixed S for simplicity. A BSP schedule with S supersteps consists of:

An assignment of nodes to processors π : V → [P] and to supersteps τ : V → [S]. For
simplicity, we introduce the notation H(s,p) = {v ∈ V |π(v) = p, τ(v) = s} for the set of
nodes assigned to processor p and superstep s. We can imagine the nodes of H(s,p) to be
executed in an arbitrary (but topologically correct) order on p in superstep s.

A set Γ of 4-tuples (v, p1, p2, s) ∈ V× [P]× [P]× [S], indicating that the output of node v

is sent from processor p1 to processor p2 in the communication phase of superstep s. In
this base variant of BSP, we only include p1 in these 4-tuples for clarity, but we always
assume p1 = π(v), i.e. the value is sent from the processor where it was computed.

A valid BSP schedule must satisfy the following conditions:
(i) A node v can only be computed if all of its predecessors are available, i.e. they were

computed on processor π(v) in an earlier (or the same) superstep, or sent to π(v) before the
given superstep. That is, for all (u, v)∈E, if π(u) = π(v) then we must have τ(u) ≤ τ(v),
and if π(u) ̸= π(v) then we must have (u, π(u), π(v), s) ∈ Γ for some s < τ(v).

(ii) We only communicate values that are already computed: if (v, p1, p2, s) ∈ Γ, then
p1 = π(v), and τ(v) ≤ s.

Cost function. The computation phase can be executed in parallel on the different processors,
so its cost (the amount of time it takes) in superstep s ∈ [S] is the largest amount of
computation executed on any of the processors. More formally, the work cost of superstep s

(first for a given processor p ∈ [P], and then in general) is defined as

Cwork
(s,p) = |H(s,p)| and Cwork

(s) = max
p∈[P]

Cwork
(s,p) .

Communication costs, on the other hand, are governed by two further problem parameters:
g ∈ N is the cost of communicating a single unit of data, and L ∈ N is the fixed latency
cost incurred by each superstep. BSP assumes that different values can be communicated
in parallel in general, but any processor can only send and receive a single value in any
time unit. As such, BSP considers the number of values sent and received by processor p in
superstep s, and then defines the communication cost of a superstep (for p, or in general) as
the maximum of these; this cost function is also known as a h-relation. More formally, let

Csent
(s,p) = |{(v, p, p′, s) ∈ Γ}| and Crec

(s,p) = |{(v, p′, p, s) ∈ Γ}|

for some fixed s∈ [S] and p∈ [P] (over all v∈ V and p′ ∈ [P]), and then let

Ccomm
(s,p) = max(Csent

(s,p) , Crec
(s,p)) and Ccomm

(s) = max
p∈[P]

Ccomm
(s,p) .

The cost C(s) of superstep s and the cost C of the entire schedule is then defined as:

C(s) = Cwork
(s) + g · Ccomm

(s) + L and C =
∑

s∈[S]

C(s) .

P. A. Papp, G. Anegg and A. N. Yzelman 5

For an example, consider the BSP schedule shown in Figure 1, and let s = 1, p1 = 1,
p2 = 2. Here processor p1 computes 4 nodes, and processor p2 computes 5 nodes, so
Cwork

(s,p1) = 4, Cwork
(s,p2) = 5, and Cwork

(s) = max(4, 5) = 5 in the computation phase. In
the communication phase, p1 must send a single value to p2 (so Csent

(s,p1) = Crec
(s,p2) = 1),

while p2 must send two values to p1 (Csent
(s,p2) = Crec

(s,p1) = 2). This implies Ccomm
(s,p1) =

Ccomm
(s,p2) = max(2, 1) = 2, and hence Ccomm

(s) = 2. The total cost of the superstep is
C(s) = 5 + 2 ·g + L. For more details on the BSP model, we refer the reader to [41, 5].

As a scheduling problem. We can now formally define our DAG scheduling problem.

▶ Definition 1. Given an input DAG, the goal of the BSP scheduling problem is to find a
feasible BSP schedule (π, τ, Γ) as described above, with minimal cost C.

In the decision version of the problem, we also have a maximal cost parameter C0, and
we need to decide if there is a BSP schedule with cost C ≤ C0. For simplicity, we will often
focus on the case of L = 0, which is already similar to L≥ 0 in terms of hardness.

From a complexity perspective, it is important to note that we consider the parameters
P, g, L to be small fixed constants (properties of our computing architecture), and not parts
of the problem input. We especially emphasize this for P , since in contrast to our work,
some others assume that P is an input variable that can be up to linear in n; however, this
is unrealistic in most applications, and also makes the problem unreasonably hard even
for trivial DAGs. In general, both settings (fixed P and variable P) have been extensively
studied before, and are distinguished by “Pm” and “P” in the classical 3-field notation [22].

Further model extensions. While we mostly focus on the base model described above, we
sometimes also point out how our claims carry over to two very natural extensions of the
scheduling problem that occur frequently in the literature. A more formal definition of these
extensions (as well as all other models in the paper) is provided in Appendix A.

The model can be extended with node weights, i.e. work weights wwork : V → Z+ and/or
a communication weights wcomm : V → Z+, to capture that in practice, it often takes a
different amount of time to compute different subtasks, or communicate their output.
We can also allow duplications (also called replications), i.e. to execute the same node
multiple times, on different processors; this can decrease the amount of communication
required between processors, hence sometimes reducing the total cost.

4 Comparison to other models

4.1 Taxonomy of scheduling models
In the most basic scheduling model, which we call classical scheduling, nodes are assigned to
processors π : V → [P] and time steps t : V → Z+, with two conditions: we cannot execute
two nodes on the same processor at the same time (∄u, v ∈ V with π(u) = π(v), t(u) = t(v)),
and we must respect the precedence constraints (∀(u, v) ∈ E we need t(u) < t(v)). The
cost of a schedule is simply its makespan maxv∈V t(v). This setting essentially assumes no
communication cost between the processors.

A more realistic version of this setting also considers a fixed communication delay between
processors; we call this the commdelay model. This model has a further parameter g, and
only differs in the second validity condition: for all (u, v) ∈ E, in case if π(u) ̸= π(v), we
now need to have t(v) > t(u) + g.

6 DAG Scheduling in the BSP Model

processor 2, superstep 1

processor 1, superstep 1

proc. 2, sup. 2

proc. 1, sup. 2

Figure 1 Example BSP schedule for a
DAG. The labelled boxes only represent
the computation phase of a superstep; the
superstep itself also consists of the com-
munication phase that follows.

free comm.

(no cost)

simplified
comm. cost
(any amount
of data in a
single step)

exact
comm. cost
(depends on
data volume)

comp. &
comm.
simulta-
neously

classical
scheduling

[8, 53, . . .]

commdelay

[47, 30, . . .]

single-port
duplex

[46]

comp. &
comm. in
separate

phases

classical
scheduling

[8, 53, . . .]

commdelay
with phases

[16]

BSP
[novel for

DAGs]

Table 1 Simplified taxonomy of DAG schedul-
ing models. The horizontal axis shows different
models of capturing communication cost, whereas
the vertical axis shows whether simultaneous com-
putation and communication steps are allowed.

Note that BSP has two major differences from this commdelay model. Firstly, commdelay
allows a processor p to execute computations and communications simultaneously, while in
BSP, these are explicitly separated into a computation/communication phase. Moreover,
commdelay in fact allows any number of values to be sent from p1 to p2 simultaneously,
whereas BSP also considers the communication volume: sending k values from p1 to p2 takes
k times as long as sending a single value. Previous work has already briefly considered the
extension of commdelay with both of these modifications separately:

The work of [16] considers a variant of commdelay where computation and communication
can only happen in separate phases, and studies how this relates to the base model.

The work of [46] introduces a single-port duplex (SPD) model, which extends commdelay
with communication volume: besides the assignment t : V→ Z+, a schedule must also
specifically assign the send/recieve steps to disjoint time intervals for each processor.

The models above are summarized in Table 1, which shows that DAG scheduling in BSP
indeed fills a natural place in this taxonomy. We note that while the models in the last
column seemingly use a different method to capture communication cost (time intervals
in SPD, h-relations in BSP), one can show that these two methods are in fact essentially
equivalent; we discuss this in detail in Appendix B.

In the last column of Table 1, the difference between SPD and BSP is, in fact, twofold.
Firstly, BSP assumes that at any time, a processor can only do either computation or commu-
nication, but not both. Secondly, BSP assumes that the execution is divided into supersteps,
which can be understood as a barrier synchronization requirement: to communicate a value
v, we first need a point in time (after computing v) when no processor is computing, and
hence they can initiate the process of sending v (and other values). By separating these two
properties, we can extend our taxonomy into Table 2 to include some further model variants.

If global synchronization is required (so we have supersteps), but processors can compute
and communicate simultaneously: in fact, the original definition of BSP [60] implicitly
assumes this setting, defining C(s) as the maximum of Cwork

(s) and g ·Ccomm
(s) + L. Let

us call this model maxBSP. In contrast, recent textbooks on BSP [5] apply the definition
in Section 3, where the two terms are summed up. Note that defining a reasonable
maxBSP model for DAGs scheduling requires further consideration, to ensure that the
computation and communication phases of each superstep are indeed parallelizable.

P. A. Papp, G. Anegg and A. N. Yzelman 7

free communication
(no cost)

simplified comm. cost
(any amount of data

in a single step)

exact comm. cost
(cost depends on

data volume)

comp. & comm.
simultaneously

no
sync

classical
scheduling commdelay single-port duplex

sync classical
scheduling

commdelay
with sync points maxBSP

comp. & comm.
separately

no
sync

classical
scheduling

α−β with β = 0
(or subset-CD)

α−β with α = 0
(or subset-BSP)

sync classical
scheduling

commdelay
with phases BSP

Table 2 Extended table of DAG scheduling models. The vertical axis is split according to two
properties: (i) whether computation and communication are allowed simultaneously, and (ii) whether
barrier synchronization is required for communication.

If processors can only either compute or communicate at a given time, but no synchron-
ization is needed: one can interpret this as the α−β model [52] with a choice of α = 0,
although the definition of this model varies. This allows e.g. p1 and p2 to stop computing
and exchange values, while the rest of the processors keep computing in the meantime.

We can also apply the same separation idea to obtain 4 slightly different variants of the
commdelay model; in contrast to this, classical scheduling remains identical in all 4 cases.

4.2 Optimum costs and further properties
One natural question in this taxonomy is how the optimum costs in these models (denoted
by OPT) relate to each other for a given DAG. Firstly, note that in any of the models, one
of the processors must have a work cost of n

P at least; this provides a lower bound. Moreover,
executing the entire DAG on a single processor (without communication) always yields a
valid solution of cost n, hence always approximating the optimum to a factor P .

▶ Proposition 2. We have n
P ≤ OPT ≤ n in any of these models.

Next we compare the optimum cost in the two fundamental models, classical scheduling
and commdelay, to the optimum in BSP (denoted by OPTclass, OPTCD and OPTBSP ,
respectively, assuming L=0 in BSP). These clearly satisfy OPTclass ≤ OPTCD ≤ OPTBSP .
Finding the maximal difference is more involved; however, note that e.g. Proposition 2 already
implies that the optimum costs in any two models differ by at most a factor P .

▶ Lemma 3. We have OPTBSP ≤ P ·OPTclass for any DAG and parameters P and g.
Moreover, OPTCD ≤ (1 + g) ·OPTclass. These bounds are essentially tight: there are DAG
constructions with OPTCD

OPTclass
= P , OPTBSP

OPTCD
= P , and OPTCD

OPTclass
= (1+g−ε) for any ε > 0.

Due to our focus on BSP, we also analyze the relation between the models in the last
column of Table 2 in detail. Let us denote their optimum costs by OPTSP D, OPTmBSP ,
OPTβ and OPTBSP from top to bottom, again for L = 0. The restrictiveness of the
models implies OPTSP D ≤ OPTmBSP ≤ OPTBSP and OPTSP D ≤ OPTβ ≤ OPTBSP .
We complement this by the following observations.

▶ Theorem 4. For any DAG and parameters P , g, the optimum cost between any two
models in the last column of Table 2 differs by a factor 2 at most; or equivalently, we have
OPTBSP ≤ 2 ·OPTSP D. Moreover, we show DAG constructions that prove (for any ε > 0)

8 DAG Scheduling in the BSP Model

a matching lower bound of (2−ε) for the ratios OPTβ

OPTSP D
, OPTBSP

OPTSP D
, OPTβ

OPTmBSP
and OPTBSP

OPTmBSP
,

a slightly looser lower bound of (3
2 − ε) for the ratios OPTmBSP

OPTSP D
, OPTBSP

OPTβ
and OPTmBSP

OPTβ
.

Finally, we discuss a few further properties of the models; while these can be proven
with rather simple constructions, they still provide some valuable insight. Firstly, we note
that while all cells in the first column of Table 2 seem identical, in case of weighted DAGs,
synchronization can in fact make a significant difference even in this classical model. Secondly,
we briefly analyze how duplication affects the different models in the taxonomy.

▶ Proposition 5. In classical scheduling with work weights, barrier synchronization can
increase the optimum cost (by a factor (2−ε) for any ε > 0).

▶ Proposition 6. Duplication can reduce the optimum cost in the following models:
all models with communication cost (middle and right-hand column of Table 2),
classical scheduling models with barrier synchronization, but only if we have work weights.

5 Communication models within BSP

For the rest of the paper, we focus on the BSP model. However, even within BSP, there are
some different options to model the communication rules, and these seemingly small changes
in the model definition can have a significant effect on the properties of the model.

We discuss two modelling choices that can be combined to form 4 different communication
models within BSP. We name these models in Table 3. Our results in Sections 8 and 9 will
show that these submodels can indeed influence some properties of the problem. We note
that these modelling choices only arise in models like BSP, which capture communication
volume; in e.g. classical scheduling or commdelay, these variants are all equivalent.

Free movement of data. For simplicity, our base BSP model assumed π(v) = p1 for all
(v, p1, p2, s) ∈ Γ, i.e. values are always sent from the processor where they were computed.
In practice, there is no reason to make this restriction; to transfer a value from p1 to p2, one
might as well send it from p1 to a third processor p3 first, and then from p3 to p2.

Moreover, there are simple examples where such unrestricted movement of data between
processors can indeed result in a lower communication cost altogether. Consider the BSP
schedule in Figure 2 with P =3 processors. This schedule has a node that is computed on p3
in superstep 1, but later only needed on p1 in superstep 3. In case of direct transfer, we can
send this value from p3 to p1 in either superstep 1 or 2; however, p1 must already receive
a value in superstep 1, and p3 must already send a value in superstep 2, so both of these
choices increase the communication cost in one of the supersteps. On the other hand, with
free data movement, we can send the value from p3 to p2 in superstep 1, and then from p2
to p1 in superstep 2, without increasing the communication cost in either superstep.

Singlecast or broadcast. Another interesting question is what happens if processor p wants
to send a single value v to multiple other processors p1, ..., pk in the same superstep. In our
base model, this requires a separate entry (v, p, pi, s) for all i∈ [k], and hence contributes k

units to the send cost Csend
(s,p). This is a reasonable assumption e.g. if the communication

topology is a fully connected graph; in this case, p needs to send this value over k distinct
network links. However, in other cases, it is more reasonable to only charge a single unit of
send cost for this, i.e. to assume that data transfers are broadcast operations, and hence the
values can be received by any number of processors. This can correspond to e.g. a star-shaped
topology with a single communication device in the middle.

P. A. Papp, G. Anegg and A. N. Yzelman 9

p3, s=1

p2, s=1

p1, s=1

p3, s=2

p2, s=2

p1, s=2

p3, s=3

p2, s=3

p1, s=3

...

...

...

Figure 2 Example BSP schedule where
free data movement allows a lower commu-
nication cost than direct data transfer.

Singlecast Broadcast

Direct
transfer

DS model
CS: open problem

ILP: O(n · P · S) vars

DB model
CS: NP-hard

ILP: O(n · P · S) vars

Free data
movement

FS model
CS: NP-hard

ILP: O(n · P 2 · S) vars

FB model
CS: NP-hard

ILP: O(n · P · S) vars

Table 3 Different communication models
within BSP, and their properties established in
Sections 8 and 9. Our main complexity results
(Theorems 7–10) hold in any of these models.

6 NP-hardness

One fundamental question regarding our scheduling problem is its complexity. Unsurprisingly,
the problem is NP-hard in general DAGs. However, this raises a natural follow-up question,
which has also been studied in simpler models: in which subclasses of DAGs is the problem
still solvable in polynomial time, and when does it become NP-hard?

The simplest non-trivial subclass of DAGs is chain DAGs, where both the indegree and
outdegree of nodes is at most 1. This subclass has been analyzed in different scheduling
models before [15, 57], and has even been studied in BSP [21], under slightly different
assumptions (see Appendix C). We also consider a slightly more realistic version of this
subclass: we say that a DAG is a connected chain DAG if it can be obtained by adding an
extra source node v0 to a chain DAG, and drawing an edge from v0 to the first node in every
chain. We show that for these relatively simple classes of DAGs, the optimal BSP schedule
can still be found in polynomial time. The key observation in the proof is that the optimal
BSP schedule in chain DAGs always consists of at most P supersteps; this allows us to find
the optimum through a rather complex dynamic programming approach.

▶ Theorem 7. The BSP scheduling problem can be solved in polynomial time in n for chain
DAGs and connected chain DAGs.

On the other hand, it turns out that BSP scheduling already becomes NP-hard for slightly
more complex DAGs. In particular, we consider (i) DAGs with height only 2, where height is
the number of nodes in the longest directed path, and (ii) in-trees, which are DAGs where
every node has outdegree at most 1. We prove that in these (still relatively simple) classes,
the problem is already NP-hard. Since the scheduling problem is known to be polynomially
solvable for these specific classes in simpler models [19, 40], this shows that our more advanced
model indeed comes at the cost of increased complexity.

▶ Theorem 8. BSP scheduling is already NP-hard if restricted to DAGs of height 2.

▶ Theorem 9. BSP scheduling is already NP-hard if restricted to in-trees.

Proof sketch. The proof of Theorem 8 uses a reduction from the k-clique problem, and can
be loosely understood as an adaptation of the reduction approach for partitioning in [48] to
our setting. Intuitively, the second level of the DAG consists of gadgets representing each
node of the input graph, while the first level consists of gadgets representing the edges; each
edge gadget is connected to the two incident node gadgets. Our construction ensures that at
most k of the node gadgets can be assigned to a given processor p without incurring a too

10 DAG Scheduling in the BSP Model

large work cost, and that each edge gadget incurs a communication step exactly if one of its
incident node gadgets is not assigned to p. With the appropriate cost limit C0, the DAG
only admits a valid schedule if there are k original nodes that induce

(
k
2
)

edges.
Theorem 9 is our most technical proof, requiring P = 16 processors; we only provide

a brief intuitive overview here. Firstly, our choice of C0 ensures that we can only have
n
P computations on any processor, and only d communication steps altogether (for some
d). Then on the one hand, our construction contains a large gadget that occupies a single
processor p for the entire schedule (otherwise the communication cost is too high), and d

further gadgets that each need to send a value to p. Any schedule needs to manage these
gadgets carefully to ensure that one of these d values is already available every time we do a
communication step; this ensures that the communications can only happen at specific times
at the earliest. On the other hand, we use critical paths to ensure that specific nodes need to
be computed by a given time step. We then attach further gadgets to given segments of these
paths, which forces us to split the work between multiple processors (and thus communicate)
to satisfy these deadlines; hence communications must happen at specific times at the latest.
Together, these define the exact times when we need to communicate, otherwise the cost
exceeds C0. Due to this, there is essentially only one way to develop a valid schedule in our
DAG. The underlying reduction then uses the 3-partition problem with gadgets representing
each input number ai, and ensures that it is only possible to satisfy each communication
deadline if the numbers ai are sorted into triplets that each sum up to a given value. ◀

7 Inapproximability

Given the NP-hardness of the problem, another follow-up question is whether we can at least
approximate the optimal solution in polynomial time. However, we show that on general
DAGs, BSP scheduling is APX-hard: there is a constant ϵ > 0 such that it is already NP-hard
to approximate the optimum cost to a (1 + ϵ) factor. To our knowledge, for the case of
constant P , no similar hardness results are known for other DAG scheduling problems.

▶ Theorem 10. BSP scheduling is APX-hard: there exists a constant ϵ > 0 such that it is
NP-hard to approximate the optimal scheduling cost to a (1 + ϵ) factor, already for P = 2.

Proof sketch. We provide a reduction from MAX-3SAT(B), i.e. maximizing the satisfied
clauses in a 3SAT formula where each variable occurs at most B times; this is already known
to be APX-hard for B ∈ O(1) [58, 4]. Our construction consists of a separate gadget for each
clause and each variable of the given 3SAT formula. On a high level, the variable gadgets
contain two separate subgadgets that we need to assign to the two different processors; this
choice corresponds to setting the variable to true or false in the underlying formula. The
clause gadgets then contain subgadgets corresponding to the 3 literals in the clause, which
need to be assigned according to the truth value chosen in the corresponding variable gadget.
Whenever a clause is unsatisfied, the corresponding gadgets in the schedule incur a slightly
higher work cost than a satisfied clause. With this, altogether, the total cost of the BSP
schedule has a Θ(n) term that is proportional to the number of unsatisfied clauses, which
allows us to complete the reduction.

The technical part of the proof is to show that any reasonable schedule in our DAG is
indeed structured as described above, representing a solution of MAX-3SAT(B). Intuitively,
our construction ensures that using any other kind of subschedule in our gadgets results in
a higher work or communication cost. More formally, we can always apply a sequence of
transformation steps to convert any other BSP schedule into a schedule that represents a
valid 3SAT assignment, while only decreasing the cost of the solution. ◀

P. A. Papp, G. Anegg and A. N. Yzelman 11

p2, s=1

p1, s=1

p2, s=2

p1, s=2

p2, s=3

p1, s=3

p2, s=4

p1, s=4

...

...

Figure 3 Illustration of the CS problem: both eager and lazy scheduling can be suboptimal.

8 Problem within a problem: communication scheduling

Since h-relations are a complex communication metric, it is natural to wonder if the hardness
of BSP scheduling lies only within the assignment of nodes to processors and steps (as
in simpler models), or if the scheduling of communication steps also adds another layer
of complexity on this. More specifically, assume that the nodes are already assigned to
processors and supersteps, but we still need to decide when the values are communicated
between the chosen processors; is this subproblem easier to solve?

▶ Definition 11. In the communication scheduling (CS) problem, we are given a fixed π and
τ , and we need to find a communication schedule Γ that minimizes the resulting BSP cost.

We implicitly assume that π and τ ensure that there is a feasible communication schedule,
i.e. for all (u, v) ∈ E, we have τ(u) ≤ τ(v) if π(u) = π(v), and τ(u) < τ(v) if π(u) ̸= π(v).

As a heuristic approach, one might consider an eager or lazy communication policy, i.e.
to communicate each value immediately after it is computed (eager), or only in the last
possible superstep before it is needed (lazy). However, both of these schedules might be
suboptimal. Consider the example in Figure 3, where most of the computed values need to
be sent immediately in the same superstep, but p2 also computes a value in s=1 that is only
needed at p1 in s=4, so p2 can choose to send it in superstep 1, 2 or 3. The eager and lazy
policies send this value in superstep 1 and 3, respectively, but these both increase the cost of
the given h-relation; in contrast to this, sending in superstep 2 comes at no further cost.

This suggest that CS is indeed an interesting problem from a theoretical perspective.
Furthermore, from the practical side, the CS problem has significantly less degree of freedom;
as such, a heuristic scheduler could aim to first find a good initial BSP schedule, and then
try to improve this by fixing π and τ , and reducing the communication cost separately.

For the simplest case of P = 2, one can show that a greedy approach already finds the
optimal solution (in any model of Table 3, since these are all equivalent for P = 2).

▶ Lemma 12. The CS problem can be solved in polynomial time for P = 2 processors.

Interestingly, for general P , the hardness of CS may depend on the communication model.
In particular, we prove that CS is already NP-hard in case of the DB, FS or FB models;
however, we leave it as an open question whether the problem is also NP-hard in DS.

▶ Theorem 13. The CS problem is NP-hard in the DB, FS and FB models.

Proof sketch. The proof uses a reduction from the 3D-matching problem: given three sets
X, Y , Z of size N , and M triplets from X×Y×Z, we need to select N triplets that form
a disjoint cover. We convert this into a CS problem where each triplet is represented by a
value which needs to be sent from p0 to several other processors, with the concrete deadlines
depending on the given triplet. The construction consists of two parts. The first part allows

12 DAG Scheduling in the BSP Model

us to send exactly (M −N) values from p0 to all other processors (the triplets that are not
chosen) within the allowed cost. The second part allows us to send N further values from p0
to the other processors, but only if the corresponding triplets are disjoint.

Intuitively, the proof works in DB, FS and FB because sending a value from p1 to p2 and
from p1 to p3 are not independent operations: with broadcast, a value sent from p1 can be
received by both p2 and p3 at the same time, and with free data movement, p1 can send
a value to another processor pa, which relays this to both p2 and p3. These are crucial to
ensure that p0 indeed sends the same (M −N) values to all other processors in the first part.
In contrast to this, the communication steps from p1 to p2 and from p1 to p3 are essentially
independent from each other in DS, so the same approach cannot be applied. ◀

On the other hand, if we have communication weights, then it becomes relatively simple
to reduce CS to standard packing problems already for P = 2 processors.

▶ Lemma 14. With communication weights, the CS problem is already NP-hard for P = 2.

9 Formulation as an ILP problem

Finally, we present a straightforward approach to formulate BSP scheduling as an Integer
Linear Programming (ILP) problem. Since today’s ILP solvers can often solve even fairly
large instances in reasonable time, this naive ILP formulation may already be a viable
approach in several applications, especially if the computation is modelled as a DAG at
relatively coarse granularity. A similar approach with ILP solvers has already provided
remarkable empirical results for various combinatorial problems [27]. Our ILP formulation
also generalizes very naturally to the extensions with node weights and/or duplication.

▶ Proposition 15. BSP scheduling can be formulated as an ILP problem on O(n · P · S)
variables in the DS, DB and FB models, and on O(n · P 2 · S) variables in the FS model.

Proof sketch. For all v∈ V , p∈ [P], s∈ [S], we introduce two binary variables: compv,p,s

indicates whether value v is computed on processor p in superstep s, while presv,p,s indicates
whether the output of v is already present on processor p after the computation phase of
superstep s. We can then already express the work costs Cwork

(s,p) by a summation, and
Cwork

(s) by requiring Cwork
(s) ≥ Cwork

(s,p) for all p. The main difference between the models
is how we capture the actual communication steps:

In broadcast models (DB and FB), we simply add binary variables sentv,p,s and recv,p,s

to indicate if processor p sends/receives value v in superstep s. The constraints here must
ensure that if recv,p1,s = 1, then sendv,p2,s = 1 for some other processor p2.
In FS, we need to add binary variables commv,p1,p2,s to indicate the concrete data transfer,
i.e. whether value v is sent from processor p1 to processor p2 in superstep s. The validity
of these operations can simply be checked using the variables presv,p,s.
Finally, in DS, a naive solution would also use the variables commv,p1,p2,s. However,
since here only processor π(v) is allowed to send v, we can use some auxiliary variables
to also capture this case with O(n · P · S) variables, similarly to DB and FB.
Note that a value v is present on processor p in superstep s if it was already present before,

it was computed in this superstep, or it was received in the previous superstep; hence e.g. in
the broadcast models, the constraint presv,p,s ≤ presv,p,(s−1) + compv,p,s + recv,p,(s−1)
ensures the validity of the variables presv,p,s. The precedence constraints in the DAG can
be encoded by requiring compv,p,s ≤ presu,p,s for all (u, v) ∈ E. The entire set of variables
and constraints for each model is discussed in Appendix F. ◀

P. A. Papp, G. Anegg and A. N. Yzelman 13

References
1 Sanjeev Arora. Probabilistic checking of proofs and hardness of approximation problems.

University of California, Berkeley, 1994.
2 Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto Marchetti-

Spaccamela, and Marco Protasi. Complexity and approximation: Combinatorial optimization
problems and their approximability properties. Springer Science & Business Media, 2012.

3 Kenneth R Baker and Dan Trietsch. Principles of sequencing and scheduling. John Wiley &
Sons, 2013.

4 Paul R Berman, AD Scott, and M Karpinski. Approximation hardness and satisfiability of
bounded occurrence instances of sat. Technical report, SIS-2003-269, 2003.

5 Rob H Bisseling. Parallel Scientific Computation: A Structured Approach Using BSP. Oxford
University Press, USA, 2020.

6 Hans L Bodlaender and Michael R Fellows. W [2]-hardness of precedence constrained k-
processor scheduling. Operations Research Letters, 18(2):93–97, 1995.

7 Lin Chen, Klaus Jansen, and Guochuan Zhang. On the optimality of approximation schemes
for the classical scheduling problem. In Proceedings of the 25th annual ACM-SIAM symposium
on Discrete algorithms (SODA), pages 657–668. SIAM, 2014.

8 Edward G Coffman and Ronald L Graham. Optimal scheduling for two-processor systems.
Acta informatica, 1(3):200–213, 1972.

9 David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice
Santos, Ramesh Subramonian, and Thorsten Von Eicken. Logp: Towards a realistic model of
parallel computation. In Proceedings of the fourth ACM SIGPLAN symposium on Principles
and practice of parallel programming (PPoPP), pages 1–12, 1993.

10 Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Sai Sandeep, Jakub Tarnawski, and
Yihao Zhang. On the hardness of scheduling with non-uniform communication delays. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 316–328. SIAM, 2022.

11 Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Jakub Tarnawski, and Yihao Zhang.
Scheduling with communication delays via lp hierarchies and clustering. In 61st Annual
Symposium on Foundations of Computer Science (FOCS), pages 822–833. IEEE, 2020.

12 Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Jakub Tarnawski, and Yihao Zhang.
Scheduling with communication delays via lp hierarchies and clustering ii: weighted completion
times on related machines. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2958–2977. SIAM, 2021.

13 Danny Dolev and Manfred K Warmuth. Scheduling precedence graphs of bounded height.
Journal of Algorithms, 5(1):48–59, 1984.

14 Danny Dolev and Manfred K Warmuth. Profile scheduling of opposing forests and level orders.
SIAM Journal on Algebraic Discrete Methods, 6(4):665–687, 1985.

15 Jianzhong Du, Joseph YT Leung, and Gilbert H Young. Scheduling chain-structured tasks to
minimize makespan and mean flow time. Information and Computation, 92(2):219–236, 1991.

16 Noriyuki Fujimoto and Kenichi Hagihara. On approximation of the bulk synchronous task
scheduling problem. IEEE Transactions on Parallel and Distributed Systems, 14(11):1191–1199,
2003.

17 Harold N Gabow. An almost-linear algorithm for two-processor scheduling. Journal of the
ACM, 29(3):766–780, 1982.

18 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

19 MR Garey, DS Johnson, RE Tarjan, and M Yannakakis. Scheduling opposing forests. SIAM
Journal on Algebraic Discrete Methods, 4(1):72–93, 1983.

20 Shashwat Garg. Quasi-ptas for scheduling with precedences using LP hierarchies. In 45th
International Colloquium on Automata, Languages, and Programming (ICALP 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

14 DAG Scheduling in the BSP Model

21 Alfredo Goldman, Gregory Mounié, and Denis Trystram. Near optimal algorithms for schedul-
ing independent chains in bsp. In Proceedings. 5th International Conference on High Perform-
ance Computing, pages 310–317. IEEE, 1998.

22 Ronald Lewis Graham, Eugene Leighton Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling: a survey. In
Annals of discrete mathematics, volume 5, pages 287–326. Elsevier, 1979.

23 Gaétan Hains. Subset synchronization in bsp computing. In International Conference on
Parallel and Distributed Processing Techniques and Applications, volume 98, pages 242–246,
1998.

24 Claire Hanen and Alix Munier. An approximation algorithm for scheduling dependent tasks on
m processors with small communication delays. In Proceedings 1995 INRIA/IEEE Symposium
on Emerging Technologies and Factory Automation. ETFA’95, volume 1, pages 167–189. IEEE,
1995.

25 Jonathan MD Hill, Bill McColl, Dan C Stefanescu, Mark W Goudreau, Kevin Lang, Satish B
Rao, Torsten Suel, Thanasis Tsantilas, and Rob H Bisseling. BSPlib: The BSP programming
library. Parallel Computing, 24(14):1947–1980, 1998.

26 JA Hoogeveen, Jan Karel Lenstra, and Bart Veltman. Three, four, five, six, or the complexity
of scheduling with communication delays. Operations Research Letters, 16(3):129–137, 1994.

27 Engelina L Jenneskens and Rob H Bisseling. Exact k-way sparse matrix partitioning. In 2022
IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 754–763. IEEE, 2022.

28 Howard Karloff and Uri Zwick. A 7/8-approximation algorithm for max 3sat? In Proceedings
38th Annual Symposium on Foundations of Computer Science, pages 406–415. IEEE, 1997.

29 Oumar Koné, Christian Artigues, Pierre Lopez, and Marcel Mongeau. Event-based milp
models for resource-constrained project scheduling problems. Computers & Operations Research,
38(1):3–13, 2011.

30 Janardhan Kulkarni, Shi Li, Jakub Tarnawski, and Minwei Ye. Hierarchy-based algorithms
for minimizing makespan under precedence and communication constraints. In Proceedings of
the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2770–2789.
SIAM, 2020.

31 Jan Karel Lenstra, AHG Rinnooy Kan, and Peter Brucker. Complexity of machine scheduling
problems. In Annals of discrete mathematics, volume 1, pages 343–362. Elsevier, 1977.

32 Jan Karel Lenstra and AHG Rinnooy Kan. Complexity of scheduling under precedence
constraints. Operations Research, 26(1):22–35, 1978.

33 Jan Karel Lenstra, David B Shmoys, and Éva Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical programming, 46(1):259–271, 1990.

34 Joseph Y-T Leung and Gilbert H Young. Minimizing total tardiness on a single machine with
precedence constraints. ORSA Journal on Computing, 2(4):346–352, 1990.

35 Elaine Levey and Thomas Rothvoss. A (1+ epsilon)-approximation for makespan scheduling
with precedence constraints using lp hierarchies. In Proceedings of the 48th annual ACM
symposium on Theory of Computing (STOC), pages 168–177, 2016.

36 Shi Li. Scheduling to minimize total weighted completion time via time-indexed linear
programming relaxations. In IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 283–294. IEEE Computer Society, 2017.

37 Shi Li. Towards PTAS for precedence constrained scheduling via combinatorial algorithms. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2991–3010.
SIAM, 2021.

38 Quanquan C Liu, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R Wang. Scheduling
with communication delay in near-linear time. In 39th International Symposium on Theoretical
Aspects of Computer Science (STACS 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2022.

P. A. Papp, G. Anegg and A. N. Yzelman 15

39 Biswaroop Maiti, Rajmohan Rajaraman, David Stalfa, Zoya Svitkina, and Aravindan Vi-
jayaraghavan. Scheduling precedence-constrained jobs on related machines with communication
delay. In 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 834–845.
IEEE, 2020.

40 Pauline Markenscoff and Yong Yuan Li. Scheduling a computational dag on a parallel system
with communication delays and replication of node execution. In Proceedings of the 7th
International Parallel Processing Symposium, pages 113–117. IEEE, 1993.

41 Bill McColl. Mathematics, Models and Architectures, page 6–53. Cambridge University Press,
2021.

42 William F McColl. Scalable computing. Computer Science Today, pages 46–61, 1995.
43 William F McColl and Alexandre Tiskin. Memory-efficient matrix multiplication in the BSP

model. Algorithmica, 24(3):287–297, 1999.
44 Matthias Mnich and Andreas Wiese. Scheduling and fixed-parameter tractability. Mathematical

Programming, 154(1):533–562, 2015.
45 Alix Munier and Jean-Claude König. A heuristic for a scheduling problem with communication

delays. Operations Research, 45(1):145–147, 1997.
46 M. Yusuf Özkaya, Anne Benoit, Bora Uçar, Julien Herrmann, and Ümit V. Çatalyürek. A

scalable clustering-based task scheduler for homogeneous processors using DAG partitioning.
In IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 155–165.
IEEE, 2019.

47 Christos Papadimitriou and Mihalis Yannakakis. Towards an architecture-independent analysis
of parallel algorithms. In Proceedings of the 20th annual ACM symposium on Theory of
computing (STOC), pages 510–513, 1988.

48 Pál András Papp, Georg Anegg, and Albert-Jan N. Yzelman. Partitioning hypergraphs is hard:
Models, inapproximability, and applications. In Proceedings of the 35th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 415–425, 2023.

49 Merten Popp, Sebastian Schlag, Christian Schulz, and Daniel Seemaier. Multilevel acyclic
hypergraph partitioning. In Proceedings of the Symposium on Algorithm Engineering and
Experiments (ALENEX), pages 1–15, 2021.

50 Rajmohan Rajaraman, David Stalfa, and Sheng Yang. Approximation algorithms for scheduling
under non-uniform machine-dependent delays. arXiv preprint arXiv:2207.13121, 2022.

51 J Roda, Casiano Rodriguez, DG Morales, and Francisco Almeida. Bulk synchronous parallel
without barriers. In Proceedings. 24th EUROMICRO Conference, volume 2, pages 961–968.
IEEE, 1998.

52 Peter Sanders, Kurt Mehlhorn, Martin Dietzfelbinger, and Roman Dementiev. Sequential and
Parallel Algorithms and Data Structures. Springer, 2019.

53 Ravi Sethi. Scheduling graphs on two processors. SIAM Journal on Computing, 5(1):73–82,
1976.

54 D Sivakumar. Algorithmic derandomization via complexity theory. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing, pages 619–626, 2002.

55 David B Skillicorn, Jonathan Hill, and William F McColl. Questions and answers about BSP.
Scientific Programming, 6(3):249–274, 1997.

56 Ola Svensson. Conditional hardness of precedence constrained scheduling on identical machines.
In Proceedings of the 42nd ACM symposium on Theory of computing (STOC), pages 745–754,
2010.

57 Vadim G Timkovsky. Identical parallel machines vs. unit-time shops and preemptions vs.
chains in scheduling complexity. European Journal of Operational Research, 149(2):355–376,
2003.

58 Luca Trevisan. Non-approximability results for optimization problems on bounded degree
instances. In Proceedings of the thirty-third annual ACM symposium on Theory of computing,
pages 453–461, 2001.

16 DAG Scheduling in the BSP Model

59 Jeffrey D. Ullman. Np-complete scheduling problems. Journal of Computer and System
sciences, 10(3):384–393, 1975.

60 Leslie G Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103–111, 1990.

61 Leslie G Valiant. A bridging model for multi-core computing. In European Symposium on
Algorithms (ESA), pages 13–28. Springer, 2008.

62 Leslie G Valiant. A bridging model for multi-core computing. Journal of Computer and System
Sciences, 77(1):154–166, 2011.

63 Bart Veltman, BJ Lageweg, and Jan Karel Lenstra. Multiprocessor scheduling with commu-
nication delays. Parallel computing, 16(2-3):173–182, 1990.

64 AN Yzelman and Rob H Bisseling. An object-oriented bulk synchronous parallel library for
multicore programming. Concurrency and Computation: Practice and Experience, 24(5):533–
553, 2012.

65 AN Yzelman, Rob H Bisseling, Dirk Roose, and Karl Meerbergen. MulticoreBSP for C: a
high-performance library for shared-memory parallel programming. International Journal of
Parallel Programming, 42(4):619–642, 2014.

P. A. Papp, G. Anegg and A. N. Yzelman 17

A Detailed definition of different model variants

We first give a more formal definition of the numerous scheduling models that were analyzed
(or only briefly mentioned) in the paper. Note that besides BSP, the simplest scheduling
models from the literature (classical scheduling and commdelay) were already defined in
Section 4.

We begin with the alternative communication models within BSP (the DB, FS and FB
models), since these play a central role in our theoretical results in Sections 8 and 9. We
then continue with the remaining models that are only loosely related to BSP. Finally we
discuss some extensions and alternative variants of the BSP scheduling problem.

A.1 DB, FS and FB models
To define the BSP scheduling problem with broadcast communication (and hence switch from
our initial definition of the DS model to DB), we need to redefine the send cost Csent

(s,p) as

Csent
(s,p) = |{v ∈ V | ∃ p′ ∈ [P] such that (v, p, p′, s) ∈ Γ}| ,

while the rest of the definitions remain unchanged.
To allow free movement of data (switch from the DS model to FS), we need to introduce

auxiliary variables similarly to the presv,p,s variables in the ILP formulation; to avoid
confusion, we develop a different notation for these in this context, referring to them as
µ(v, p, s). Formally, we let the auxiliary variable µ(v, p, s) ∈ {0, 1} indicate whether the
output of v is already present on processor p at the end of the computational phase of
superstep s; that is, we have µ(v, p, s) = 1 if either π(v) = p and τ(v) ≤ s, or if there is a
(v, p′p, s′) ∈ Γ with s′ < s. In the validity conditions of Section 3, Condition (i) will now
require for all (u, v) ∈ E to have µ(u, π(v), τ(v)) = 1, and Condition (ii) will state that if
(v, p1, p2, s) ∈ Γ, then we must have µ(v, p1, s) = 1.

Note that the modified definition for broadcasting and for free data movement can be
combined in a straightforward way to obtain the definition of the FB model, since the
corresponding modifications affect different aspects of the model definition anyway.

A.2 Single-port duplex model
The SPD model has been studied in the work of [46]; we slightly change this definition to
adapt it to node-based communication.

Similarly to commdelay, an SPD schedule has a constant parameter g, and it consists
of an assignment π : V → [P] and t : V → Z+, but also a communication schedule
Γ ⊂ V × [P] × [P] × Z+, where (v, p1, p2, t0) ∈ Γ describes that value v is sent from p1
to p2 at time step t0. These communication steps in Γ must satisfy two conditions for
validity: the values that are sent must already be computed (i.e. if (v, p1, p2, t0) ∈ Γ then
t(v) ≤ t0), and each processor can only send and receive a single value at a given time (i.e.
if (v1, p1,1, p2,1, t1), (v2, p1,2, p2,2, t2) ∈ Γ and the intervals (t1, t1 + g] and (t2, t2 + g] are not
disjoint, then we must have p1,1 ̸= p1,2 and p2,1 ̸= p2,2).

For a correct SPD schedule, we still require that a processor only computes a single node
at a time (∄u, v ∈ V with π(u) = π(v), t(u) = t(v)). For all (u, v) ∈ E, if π(u) = π(v), then
we still need to have t(u) < t(v). For edges (u, v) ∈ E with π(u) ̸= π(v), we require that
there is a (u, π(u), π(v), t0) ∈ Γ with t0 + g < t(v). As before, the cost of a schedule is simply
its makespan maxv∈V t(v).

18 DAG Scheduling in the BSP Model

p2, s=1

p1, s=1

p2, s=2

p1, s=2

p2, s=3

p1, s=3

.

. . .

v1 v2

v3

Figure 4 Example for interpreting DAG scheduling in the maxBSP model.

A.3 MaxBSP
As discussed in Section 4, a reasonable interpretation of maxBSP for DAG scheduling requires
some consideration. For instance, in the example in Figure 4, v2 needs to be the last node to
be computed on processor p1 in superstep 2, and v3 must be the first node to be computed
on p2 in superstep 3 in any case; this shows that the communication phase of superstep 2
(sending v2 from p1 to p2) cannot happen simultaneously with the computation phase of
either superstep 2 or 3.

As such, simply applying the maxBSP cost function leads to an inaccurate model; we
also need to consider which computations and communications can happen at the same time.
For instance, v1 is already computed in superstep 1, and only required in superstep 3, so it
can indeed happen simultaneously with the computations in superstep 2.

In general, DAG scheduling in maxBSP means that each superstep s consists of a
simultaneous computation and communication phase, and we can only send a value v from
p1 to p2 if v was computed on p1 in superstep (s− 1) or before, and is only needed on p2 in
superstep (s + 1) or after. For a formal definition of this, we only need minor modifications
in the original BSP definition. In particular, in validity condition (ii), we need to require
that if (v, p1, p2, s) ∈ Γ, then besides p1 = π(v), we must have τ(v) < s with strict inequality,
since the communication phase of s now overlaps with its computation phase. Besides this,
we simply need to adjust the cost of a superstep. One possible choice for this is

C(s) = max
(

Cwork
(s) , g · Ccomm

(s) + L
)

,

but as a natural alternative, we could also have

C(s) = max
(

Cwork
(s) , g · Ccomm

(s)
)

+ L .

A.4 The α− β model and subset-BSP
The third cell in the last column of Table 2 can be interpreted in several different ways for
DAG scheduling; below we discuss two of these. The main difference between these two
variants is whether they require subset synchronization between the nodes that are currently
communicating, similarly to how BSP requires it between all processors. That is, one
natural interpretation of this setting is what we call subset-BSP (also studied before [51, 23]),
where the schedule is still divided into computation and communication phases, just like
BSP, but the different processors can decide to do these communication phases at separate
points in time: each such communication phase can happen only between a given subset
of processors, while the rest of the processors keep computing in the meantime. The other

P. A. Papp, G. Anegg and A. N. Yzelman 19

natural interpretation is closer to the spirit of the α − β model (with α = 0), where no
synchronization is required at all; in other words, this is essentially identical to the SPD
model, with the minor difference that while communicating, a processor is unable to compute.

To demonstrate the difference between these two models, assume for instance that p1
computes a value v1 in time step t0, and wants to send this to p2 in the time interval
(t0, t0 + g], while p3 computes another value v2 in time step t0 + 1, and wants to send this to
p1 in the time interval (t0 + 1, t0 + g + 1]. This does not violate any condition in the α− β

model, but it is not allowed in subset-BSP, since p3 is not yet finished with the computation
of v2 at t0, so it cannot begin a communication phase together with p1 at this point.

We first begin with the definition of the α− β model, since this is surprisingly simple.
We can simply take the definition of the SPD model, and extend it with a simple further
condition on validity: if there is a communication step (u, p1, p2, t0) ∈ Γ, then we cannot
have any v ∈ V such that π(v) ∈ {p1, p2} and t0 < τ(v) ≤ t0 + g. We once again point out
that since the α− β model is mostly used as a cost function and not a complete model in
the related work, this is just one possible interpretation of it; some other works assume e.g.
that a processor is not even allowed to send and receive at the same time, which would make
this setting significantly different from all other models in our taxonomy.

On the other hand, formally defining the subset-BSP scheduling model much more
technical. For convenience, we modify the definition of supersteps for this, and assume that
each superstep on a processor only contains computations. The communication phases are
defined separately as a set {ζ1, ζ2, ...}, where each ζi is a 4-tuple (Γ, P0, ts, tf), with Γ being
a set of communication steps as before, P0 ⊆ [P] is a subset of processors of size |P0| ≥ 2,
and ts, tf ∈ N are integers denoting the starting and finishing time of the communication
phase, respectively. The set Γ now only consists of 3-tuples (v, p1, p2) ∈ V × [P]× [P], and
these must satisfy p1, p2 ∈ P0. The communication cost of ζi is defined as the cost of the
communication phase before: Ccomm

(ζi,p) is the maximum of Csent
(ζi,p) and Crec

(ζi,p), and
Ccomm

(ζi) is the maximum of these values, with p restricted to the processors in P0. The
starting and finishing times must satisfy ts + Ccomm

(ζ) = tf .
We also need to establish the starting and ending times of the computational phases

(supersteps) with functions t′
s, t′

f : [P] × [S] → N; these must satisfy t′
f (p, s) = t′

s(p, s) +
Cwork

(s,p). Furthermore, the supersteps need to be ordered correctly (t′
s(p, s) ≥ t′

f (p, s′) for
s′ < s), and disjoint from the communication phases containing p (if ζi has p ∈ P0, then for
all s either t′

f (p, s) ≤ ts or t′
s(p, s) ≥ tf for the ts, tf in ζi). Note that if the desired number

of computation phases is different for different processors, then we can simply add supersteps
of length 0 for some processors at the end of their schedule.

The validity conditions in this model are as follows. For condition (i), in case of π(u) ̸=
π(v), we must now require that there exists a ζi = (Γ, P0, ts, tf) such that (u, π(u), π(v)) ∈
Γ and tf ≤ t′

s(π(v), τ(v)). For condition (ii), we need for each ζi = (Γ, P0, ts, tf) and
(v, p1, p2) ∈ Γ to have p1 = π(v) and t′

f (p1, τ(v)) ≤ ts. Finally, the cost of a schedule can be
defined as

max
(

max
p∈[P]

t′
f (p, S) , max

ζi

tf

)
.

Subset-BSP can also easily be extended with a latency cost at each subset synchronization.
On the other hand, there is no straightforward way to do the same in the α− β model.

A.5 Commdelay model variants
While the different variants of the commdelay model (in the middle column of Table 2) are
further away from the main focus of the paper, we briefly show how these can be defined in

20 DAG Scheduling in the BSP Model

a straightforward way. These 4 commdelay variants are indeed different from each other,
and hence the properties on the vertical axis of the table (simultaneous computation and
communication, and barrier synchronization) also have a significant effect in this simplified
model where data volume is not measured.

To define the different commdelay variants, it is easier to specifically include the com-
munication steps in the schedule; that is, just like in SPD, the schedule again contains a
Γ ⊂ V × [P]× [P]× Z+, where (v, p1, p2, t0) ∈ Γ indicates that v is sent from p1 to p2 in the
interval (t0, t0 + g]. The standard commdelay model can of course also be redefined this way;
we must require that any (v, p1, p2, t0) ∈ Γ must have t(v) ≤ t0, and for edges (u, v) ∈ E

with π(u) ̸= π(v), we need a (u, π(u), π(v), t0) ∈ Γ with t0 + g < t(v). In contrast to SPD,
there is no condition requiring that the communication time intervals on a processor cannot
intersect. One can observe that this definition is indeed equivalent to the original commdelay
model if we construct Γ by adding the 4-tuple (u, π(u), π(v), t(u)) ∈ Γ for each (u, v) ∈ E

with π(u) ̸= π(v).
To define a commdelay model with sync points, we essentially assume that the start of each

communication step requires a barrier synchronization between all processors; this essentially
means that no processors can be in the middle of a computation or a communication step at
this point. If each computation has a unit work weight, then every integer time t0 is naturally
a point where no computation is happening currently; as such, for commdelay with sync
points, we only need to ensure that no processor is in the middle of a communication step
when another communication begins. Formally, this means adding the following condition to
our schedule: for any two (v1, p1,1, p2,1, t1), (v2, p1,2, p2,2, t2) ∈ Γ, we must have either t1 ≤ t2
or t1 ≥ t2 + g.

The commdelay model with phases, which has already been studied in [16], is essentially
identical to BSP, but every communication phase lasts for exactly g time units; as such,
its definition can indeed be obtained from BSP by setting Ccomm

(s) = g for any superstep.
One can also add a latency L to this model, but this essentially only creates a new delay
parameter g′ = g + L. Alternatively, the model can be defined by starting from commdelay
with sync points, and further requiring that if (v, p1, p2, t0) ∈ Γ, then for all v ∈ V we have
t(v) ≤ t0 or t(v) > t0 + g.

In case of the third column of the table we once again have two possible interpretations,
similarly to those discussed in Section A.4. If no synchronization is required at all, then we
can get a commdelay model with “timeouts”, i.e. where a processor has to stop computing
while it sends/receives. This is essentially again the α−β model, but now with β = 0; we can
define this by starting from commdelay, and adding the condition that if (u, p1, p2, t0) ∈ Γ,
then we cannot have a v ∈ V with π(v) ∈ {p1, p2} and t0 < τ(v) ≤ t0 +g. On the other hand,
if we require subset synchronization between the communicating nodes, then we can also
define a subset-commdelay model analogously to subset-BSP by changing the communication
costs to Ccomm

(ζi) = g in subset-BSP.

A.6 BSP model extensions
Real-world computations often consist of nodes with significantly different computational
or communication cost. As such, one natural extension is to consider computation (i.e.
work) weights for nodes. That is, we assume that we also have a work weight function
wwork : V → Z+ that defines the amount of time required to execute each node; similarly
to other works, we assume for simplicity that these weights are integers. Most scheduling
models are easy to extend with these work weights. E.g. in case of our BSP, the work
cost of a superstep is then understood as the sum of node weights in the superstep, i.e.

P. A. Papp, G. Anegg and A. N. Yzelman 21

Cwork
(p,s) =

∑
v∈H(s,p) wwork(v).

Besides heterogeneous work weights, the size of the output data of nodes can also differ
significantly, and hence it can take a different amount of time to communicate specific values
between the processors. As such, another extension is to assume communication weights
wcomm : V → Z+ which describe the data size (e.g. number of bytes) to be communicated in
case of each node (alternatively, some works consider this to be a function wcomm : E → Z+;
we briefly discuss this in Section A.7). The communication cost can again be adjusted
accordingly, by multiplying each term in Csent

(s,p) and Crec
(s,p) by the respective wcomm(v)

weight.
Besides work/communication weights, another extension of the base model is to allow

duplications (also called replications). That is, our initial definitions assign every compu-
tational task to a single processor and time step; in contrast to this, the extension with
duplication also allows us to execute the same node multiple times, on different processors.
Formally, a schedule in this case becomes a function τ : V × [P]→ Z+ ∪ {∅} such that for
all v ∈ V there exists a p ∈ [P] with τ(v, p) ̸= ∅. Naturally, these duplication steps come
with more total time spent on computation, but on the other hand, they can reduce the
required amount of communication between the processors, hence decreasing the scheduling
cost altogether (see Proposition 6 for examples).

A.7 Edge-based communication

Regarding the BSP model, we also point out that (as per our definitions in Section 3) we
assume a node-based communication model throughout the paper. That is, each communica-
tion step corresponds to sending the output of some node u to another processor, which is
then saved on this other processor indefinitely. In particular, if u is computed on p1, and it
has many outgoing edges (u, v1), ..., (u, vk) ∈ E to some nodes v1, ..., vk which are all assigned
to p2, then this only incurs a single communication step in our model. This is in line with
several recent works that also assume such a node-based communication model [48, 49].

In contrast to this, some other works (e.g. [46]) assume an edge-based model, where
the situation above incurs k distinct communication steps, one for each of the edges (u, vi).
This edge-based model might be motivated by a setting where the memory of processors is
limited; however, in general, it can overestimate the real communication cost by a factor k.

Note that if we have communication weights, then the natural choice for wcomm is a
function V → Z+ in this node-based model. On the other hand, other works assuming an
edge-based model sometimes use a function wcomm : E → Z+ instead.

For completeness, we also provide a definition of the edge-based alternative, i.e. the
BSP scheduling problem with edge-based communication. In this edge-based model, the
communication steps Γ are defined as a set of pairs ((u, v), s) ∈ E × [S] (instead of 4-tuples),
indicating that the data corresponding to edge (u, v) is transferred from π(u) to π(v) in the
communication phase of superstep s. In case of π(u) ̸= π(v), validity condition (i) of the
BSP schedule will now state that we must have ((u, v), s) ∈ Γ for some s < τ(v). Validity
condition (ii) is also changed accordingly: if ((u, v), s) ∈ Γ, then we need to have τ(u) ≤ s.
Finally, the definition of communication costs is modified as follows:

Csent
(s,p) = |{((u, v), s1) ∈ Γ | τ(u) = p, s1 = s}| ,

Crec
(s,p) = |{((u, v), s1) ∈ Γ | τ(v) = p, s1 = s}| ,

22 DAG Scheduling in the BSP Model

B Proofs for Section 4

This section provides a detailed discussion of our claims regarding the relations between the
different models in the taxonomy.

B.1 Communication time intervals and h-relations
Regarding the last column of Table 1, note that BSP measures data volume through the
simpler notion of h-relations, while SPD assigns communications to concrete time intervals.
It is a natural question whether these two approaches indeed describe the same cost function
(for L = 0 in BSP). That is, to justify the use of h-relations in BSP, we need to show that if
each processor p sends Csent

(s,p) and receives Crec
(s,p) values, then the communications can

indeed be scheduled into Ccomm
(s) time slots according to the rules of SPD, i.e. such that

each processor only sends and receives a single value in a step. More specifically, assume that
for each pair of processors p ̸= p′, we have Λ(p, p′) values (all available at time t) that we
need to send from p to p′. Naturally, Λ(p, p) = 0 for all p ∈ [P]. We show that, at least in
the unweighted case, we can indeed communicate all these values by the time t + g ·Ccomm

(s)

according to the rules of the SPD model, where

Ccomm
(s) = max

p,p′∈[P]
Λ(p, p′)

as in the definition of BSP. This is easy with standard graph-theoretic tools, by decomposing
a bipartite multigraph into perfect matchings.

▶ Lemma 16. If any processor sends and receives at most C values in a communication
phase, then the phase can be scheduled into C time slots (according to the rules of SPD).

Proof. Consider a bipartite multigraph on P + P nodes u1, ..., uP and v1, ..., vP , where for
each p, p′ ∈ [P], we draw Λ(p, p′) distinct edges from up to vp′ . Until there is a node which
has degree less than Ccomm

(s), we can select an arbitrary such node in both {u1, ..., uP } and
{v1, ..., vP }, and add an edge between them (we will call this an “artificial” edge). After
several such steps, the graph becomes Ccomm

(s)-regular.
It is known that such a regular bipartite graph can be decomposed into Ccomm

(s) perfect
matchings. In particular, the condition of Hall’s theorem is always satisfied for regular
graphs, so there exists a perfect matching; if we remove these edges, the remaining graph
is again regular. The fact that our graph is a multigraph does not affect this method at
all, since a multiplicity of a given edge contributes the same number of edges to a subset
U ⊆ {u1, ..., uP } and its neighborhood when applying Hall’s theorem.

These perfect matchings naturally divide the communications into Ccomm
(s) consecutive

rounds where every processor only sends and receives a single value in each round. As such,
we can transfer the values corresponding to the first matching in the time interval (0, g], the
values in the second matching in the interval (g, 2 · g], and so on. When an edge from up1 to
vp2 is artificial, then p1 simply sends no value to p2 in that round. ◀

The same claim does not hold however in case of communication weights. Consider the
case when Λ(p1, p2) = Λ(p2, p3) = Λ(p3, p1) = 3, each of these induced by a single value
of communication weight wcomm = 3, and we furthermore have a processor p4 that needs
to send a single value of communication weight 1 to all of p1, p2 and p3. The cost of the
h-relation here is Ccomm

(s) = 4, since p1, p2 and p3 receive 4 units of data in total. However,
we are unable to schedule this into the slots (0, g], (g, 2g], (2g, 3g], (3g, 4g] in the SPD model:
the values sent between p1, p2 and p3 each occupy a continuous interval of length 3g, so each

P. A. Papp, G. Anegg and A. N. Yzelman 23

of p1, p2 and p3 can only receive values from p4 either in (0, g] or in (3g, 4g]. However, p4
has to send a value to all three processors, which is not possible in these two intervals.

In case of communication weights, the same equivalence would only hold if the communic-
ation steps are preemptive, i.e. we can split wcomm(v) into smaller integer-sized data units;
in this case, we could apply the same technique as in the unweighted case. However, the
study of this preemptive case is beyond the scope of this paper.

B.2 Lemma 3
The upper bound of factor P in Lemma 3 follows directly from Proposition 2. As for the
upper bound of a factor (1 + g), consider a schedule (π, t) in the classical model, and assume
that after each step, we keep all the processors idle for g time steps and communicate every
value computed in the given time step to all other processors. In other words, the consider
the timing t′(v) = (1 + g) · t for all v ∈ V ; this is a valid schedule of the same DAG in the
commdelay model, and its makespan is at most a factor (1 + g) larger.

For the matching lower bounds, consider a layered DAG of length ℓ and width k, i.e.
a DAG consisting of n = k · ℓ nodes indexed vi,j for i ∈ [ℓ], j ∈ [k], such that every node
in the i-th layer has an edge to every node in the (i + 1)-th layer, i.e. (vi,j1 , v(i+1),j2) ∈ E

for all i ∈ [ℓ − 1] and j1, j2 ∈ [k]. With P = k processors, we have OPTclass = ℓ in this
DAG, since computation can be parallelized completely. However, in the commdelay model,
we have to wait g time units between each consecutive pair of layers unless both layers are
entirely computed on the same processor. As such, if P ≤ (1 + g), then the optimal strategy
is to execute the entire DAG on a single processor, resulting in a makespan of P · ℓ. If
P > (1 + g), then it is indeed better to wait for g time units, which gives an execution time
of (ℓ− 1) · (1 + g) + 1 (since we do not have to wait after the last layer). In the first case, we
get a ratio of P exactly, whereas in the second case, we get a ratio of

(ℓ− 1)(1 + g) + 1
ℓ

= (1 + g)− g

ℓ

which is larger than (1 + g)− ε for any ε > 0 if ℓ is large enough.
For the lower bound for classical scheduling and BSP, we can even achieve the factor P

lower bound when (1+g) < P . For this, let us add even more edges to the construction above,
such that (vi1,j1 , vi2,j2) ∈ E for all i1, i2 ∈ [ℓ], i1 < i2 and j1, j2 ∈ [k]. Here it is intuitively
even more clear that the optimum solution uses a single processor only. In particular, if two
nodes anywhere in the layers ℓ

2 + 1, ..., ℓ are assigned to different processors, then one of
these processors must receive at least 1

4 · ℓ ·P values altogether from the first half of the DAG,
resulting in a communication cost of 1

4 · ℓ · P · g; this is already larger than ℓ · P if g ≥ 4.
As such, the second half of the DAG must be assigned to a single processor p1. Assume
that there is a solution with cost below ℓ · P that also uses another processor besides p1;
we will even further reduce the communication cost of this solution by disregarding every
communication cost in our analysis except the values received by p1. We can iterate through
the nodes that are assigned to a different processor than p1 (from layer ℓ

2 to layer 1), and
reassign them one-by-one to p1; each such step may increase computation cost by 1, but
decreases communication cost by g, so it decreases the cost in total. After at most ℓ

2 ·P steps,
everything is scheduled in p1; however, this solution has cost ℓ · P , which is a contradiction.

Finally, for a lower bound for the case of commdelay and BSP, consider again a layered
DAG of length ℓ and width P , but now with layer i only having edges to the nodes in layers
{i + g + 1, ..., ℓ}, i.e. we have (vi1,j1 , vi2,j2) ∈ E for all i1, i2 ∈ [ℓ], i1 + g < i2 and j1, j2 ∈ [k].
In the commdelay model, since all values are available on all processors after g time units,

24 DAG Scheduling in the BSP Model

we can parallelize each layer of this DAG perfectly and achieve a total cost of ℓ. In case of
BSP, however, we can apply the same proof as above to show that there is again no better
schedule than computing all nodes on a single processor p1, at a cost of P · ℓ. This again
amounts to a factor P difference.

We note that the same lower bound construction techniques may also work if we replace
the BSP model by SPD; however, in this case, it becomes more technical to prove that an
SPD schedule of lower cost does not exist.

B.3 Theorem 4
We now present the proof of Theorem 4. We note that the same upper bound proof and
lower bound construction techniques can be used to show the same relations between the
different commdelay model variants (middle column of Table 2).

B.3.1 Upper bound
We begin by showing the upper bound part of Theorem 4. Consider an SPD schedule of
makespan tmax on a given DAG; we show how to turns this into a BSP schedule of cost at
most 2 · tmax, hence proving OPTBSP ≤ 2 ·OPTSP D. The remaining upper bounds follow
from this, since all the optimum costs are at most as large as OPTBSP and at least as large
as OPTSP D.

Assume we have a DAG and an SPD schedule of this DAG; then let us divide this to time
intervals of length g, i.e. (0, g], (g, 2g], ..., up to (tmax − g, tmax] (the last interval may be
shorter if tmax is not divisible by g). We turn each such interval (t0, t0 + g] into a separate
superstep s in our BSP schedule. In this superstep s, the computational phase on processor
p executes the same nodes v that have τ(v) = p and t(v) ∈ (t0, t0 + g] in our SPD schedule;
since there are at most g such nodes, we will have Cwork

(s) ≤ g. The communication phase
of superstep s, on the other hand, will send all the communication steps (v, p1, p2, t′) ∈ Γ
that have t0 ≤ t′ < t0 + g; since the sending and receiving intervals in SPD have length g

and are disjoint, this means that each processor can only send and only receive a single value
in superstep s. As such, we have Ccomm

(s) ≤ 1, and hence C(s) ≤ 2 · g. This means that the
total cost of the BSP schedule is indeed at most

tmax

g
· 2 · g = 2 · tmax .

We note that if the last interval has length smaller than g, then it results in a computational
phase with cost equal to the length of the interval, and an empty communication phase, since
we cannot begin transmitting any more values at this point. As such, the corresponding SPD
and BSP costs are equal for this interval.

B.3.2 Lower bound of (2− ε)
Let us now analyze the lower bound for the model pairs (OPTSP D ≤OPTβ) , (OPTSP D ≤
OPTBSP), (OPTmBSP ≤ OPTBSP) and (OPTmBSP ≤ OPTβ). For these cases, it
suffices to develop a DAG construction where computation and communication can be
completely parallelized in the models where this is permitted.

Assume P > 2, and consider another parameter k, and let ℓ = k · g. Let us construct a
layered DAG consisting of n = P · (ℓ + 1) nodes indexed vi,j for i ∈ {0}∪[ℓ], j ∈ [P], having
the edges (v(i−1),j , vi,j) ∈ E for all i ∈ [ℓ], j ∈ [P], as well as the edges

(v(i−1)·g),j , vi·g+1, ((j+1) mod P)) ∈ E

P. A. Papp, G. Anegg and A. N. Yzelman 25

for all i ∈ [k], j ∈ [P], where we now understand the modulo operation to return a remainder
from the set [P] for simplicity.

The DAG above can be scheduled with a cost of (ℓ + 1) in any of the models that allow
simultaneous computation and communication, i.e. in the SPD and maxBSP models. More
specifically, for all p ∈ [P], we can assign all the nodes vi,p to processor p, and in the SPD
model, assign each node vi,j to time step t(vi,j) = i + 1, whereas in the maxBSP model,
assign nodes v0,j to superstep 1, and all other nodes vi,j with i ∈ {(s−2) ·g +1, ..., (s−1) ·g}
to superstep s for s ∈ {2, ..., k + 1}. This ensures that each processor p can keep computing
the given nodes vi,p in order without any interruption. In SPD, the value of (v(i−1)·g,j) is
transferred from processor j to processor ((j +1) mod P) in the interval ((i−1) ·g +1, i ·g +1]
for all i ∈ [k], j ∈ [P], and in maxBSP, the same value is transferred in the communication
phase of superstep s = i + 1.

On the other hand, consider the models that do not allow simultaneous computation and
communication: BSP, (α − β) with α = 0, or subset-BSP. In these models, the optimum
solution is to once again assign all the nodes vi,p to processor p, but now before every node
vi·g,p, we need to allocate g time units to communicate the values between the processors. As
such the optimum cost in this case is (1 + 2 · g · k), hence the ratio between the two optima is

1 + 2 · g · k
1 + g · k

,

which is indeed arbitrary close to 2 for k large enough.

B.3.3 Lower bound of (3
2 − ε)

The lower bound construction for the model pairs (OPTSP D ≤OPTmBSP) , (OPTβ ≤
OPTBSP) and (OPTβ ≤ OPTmBSP) is slightly more technical. We first outline the
main idea. Our DAG will consist of g distinct layered subDAGs; we will number these by
k ∈ [g]. Each of the components can individually be scheduled with a cost of 2 · g + 1;
however, for this, the k-th component needs to execute computations in times steps {1, ..., k},
then a communication for g time units, and then again computations for the time steps
{g+k+1, ..., 2 ·g+1}. That is, the first subDAG requires communications in the time interval
(1, g + 1], the second one in the time interval (2, g + 2], and so on, until (g, 2 · g]. However,
this is not possible with barrier synchronization; if synchronization is required, the best we
can do is as follows: (i) execute the computation steps before the required communication
on all processors, in time g, then (ii) execute all the communications together for another
g time units, and finally (iii) compute all the post-communication nodes in another g time
units. This results in a cost of 3 · g, and hence a ratio of

3 · g
2 · g + 1 ,

which is arbitrarily close to 3
2 in an example where the parameter g is large enough.

Let us introduce a parameter k0 which will be the width of each component. Each
component consists of k0 · (g + 1) nodes indexed vi,j for i ∈ {0}∪[g], j ∈ [k0]. We add the
edges (v(i−1),j , vi,j) ∈ E for all i ∈ [g], j ∈ [k0], as well as the edges

(vk,j , vk+g+1, ((j+1) mod k0)) ∈ E

in the k-th component for all j ∈ [k0], where the modulo operation once again returns a
remainder from the set [k0]. Finally, we select P = k · k0, i.e. there is a sufficient number of

26 DAG Scheduling in the BSP Model

3

(a)

2

2

(b)

Figure 5 Example DAGs with work weights in the classical scheduling model with barrier
synchronization, for P = 3. The weights are only shown for nodes of non-unit weight.

processors to assign a separate processor p to the values vi,j in every component for every
fixed j ∈ [k0].

This DAG can be scheduled at a cost of 2 · g + 1 in the SPD, the α − β with α = 0
and subset-BSP models, as described above: in the k-th component, we can execute the
computations v1,j , ..., vk,j in the time steps {1, ..., k}, then communicate the necessary values
for g time units, and then again compute vk+1,j , ..., vg+1,j in time steps {g+k+1, ..., 2 ·g+1}.

On the other hand, in the models with barrier synchronization, we need to wait for the
computations v1,j , ..., vk,j to finish in all components before starting a new phase/superstep
(in BSP/maxBSP, respectively), then execute all communications simultaneously, and then
execute the remaining computations in a following phase/superstep. This results in a total
cost of 3·g. Note that the ability to execute computations and communications simultaneously
in maxBSP does not offer any benefit in this DAG, since each of the nodes vk+1,j require a
communication step. Alternatively, in maxBSP, it can also be optimal to have two separate
communication phases: for some k ∈ [g], we organize a separate communication phase
for the components {1, ..., k} in the time interval (k; k + g], and then another one for the
components {k + 1, ..., g} in the interval (k + g; k + 2 · g]. However, this again requires an
initial superstep with k computations in component k and a final superstep with (g − k)
computations in component (k + 1), and hence it also has a cost of 3 · g. Finally, another
possible solution would be to reduce the number of processors used (per component) in order
to avoid communication. However, if we select k0 ≥ 3, then computing each component on a
single processor already becomes suboptimal, and if we use at least 2 processors, then at
least one communication step is already required within each component.

B.4 Propositions 5 and 6
We now outline the proofs of Propositions 5 and 6 from Section 4.

When referring to the classical scheduling model with work weights, we assume that a
schedule must fulfill slightly different properties: we need to have ∄u, v ∈ V with π(u) = π(v)
such that the intervals (t(u), t(u) + wwork(u)] and (t(v), t(v) + wwork(v)] intersect, and
∀(u, v) ∈ E we need to have t(u) + wwork(u) ≤ t(v). The makespan in this case is understood
as maxv∈V t(v) + wwork(v). If we add barrier synchronization to this, we require that for
each (u, v) ∈ E with π(u) ̸= π(v) there exists a possible synchronization point t0 within the
interval [t(u) + wwork(u), t(v)] such that ∄ v0 ∈ V with t0 ∈ (t(v0), t(v0) + wwork(v0)], i.e. no
processor is computing at time t0.

B.4.1 Proof of Proposition 5
Consider the weighted DAG in Figure 5a with P =3 processors. Let us refer to the bottom
node with weight 3 as u. Without barrier synchronization, if we assign the topmost node to
p1, node u to p2 and all the other nodes to p3, the DAG admits a straightforward schedule

P. A. Papp, G. Anegg and A. N. Yzelman 27

with a makespan of 5. On the other hand, when barrier synchronization is required, the
same DAG will have an optimal makespan of 6 in classical scheduling. If we set t(u) = 1,
then no communication is possible in the interval (1, 4], and hence it is not possible use the
other two processors to parallelize the upper part of the DAG between two processors. As
such, we will still have 2 uncomputed nodes at time step 4, increasing the best makespan to
6. Alternatively, setting t(u) = 2 also results in a makespan of 6.

One can also generalize this into a construction where the optimum cost essentially
becomes twice as large when barrier synchronization is introduced. Let k be a constant
parameter, and consider the construction from the proof of Lemma 3 with width and length
k, i.e. a DAG sorted into k layers of width k such that every node in layer i ∈ [k − 1] has
an edge to every node in layer (i + 1). Besides this, let us add an isolated node u with
wwork(u) = k (we can also add a common source and sink node to the DAG if we prefer it
to be connected). Finally, let us select P = k + 1.

Without barrier synchronization, this DAG can be scheduled with a makespan of k.
However, if synchronization is required, then whenever node u is computed, the remaining
processors are not able to communicate any values within each other, so they must stay idle
for (k−1) time steps (or a single processor must compute an entire layer, which essentially has
the same effect, resulting in a delay of (k−1)). Hence the best makespan with synchronization
is 2k − 1. The ratio between the two optima is 2k−1

k ; we can make this higher than 2− ε for
any ε > 0 with a sufficiently large choice of k.

B.4.2 Proof of Proposition 6
For the first point, consider a simple DAG consisting of two directed paths of length ℓ, and
a common source node v0 that has an edge towards the initial node of both paths. For ℓ

large enough, any of the models with communication assigns the two paths to two different
processors p1 and p2, otherwise the cost is much larger. Without latency, this results in
a work cost of ℓ + 1 and a communication cost of 1 · g in each of the models, so the total
cost/makespan is ℓ + g + 1. On the other hand, if we can duplicate v0 on both p1 and p2,
then no communication is required, and we easily obtain a cost of ℓ + 1, which is smaller.

In case of classical scheduling without work weights, each integer point in time allows us to
communicate the computed values to all processors (even with barrier synchronization). As
such, if a node v is computed at time step t at the earliest, then its value can be distributed to
all processors by the beginning of time step (t + 1), so there is no motivation to compute v on
further processors either in time step t or later. Similarly, in case we have work weights but
no barrier synchronization, if t(v) + wwork(v) is the earliest time when one of the processors
finishes computing v, then the value of v already becomes available on all other processors
by this time t(v) + wwork(v), so there is no motivation for any other processor to begin
computing v. As such, duplication cannot decrease the optimum cost in these cases.

For the case when we have classical scheduling with both work weights and barrier
synchronization, consider Figure 5b with P = 3. Without barrier synchronization, the DAG
admits a straightforward schedule of makespan 5. However, with synchronization, a makespan
of 5 is not possible here: the top and bottom paths are both critical, so a makespan of 5 is
only possible if no communication happens in the intervals (1, 3] and (2, 4]. This implies that
the value of the grey node, which becomes available at t = 2 earliest, cannot be sent to a
third processor until t = 4, and as such, the node on the middle path cannot be computed
by a third processor. If we only start computing this node at t = 4 or on one of the first
two processors, then the best makespan is 6. On the other hand, if duplication is allowed,
then we can compute the bottom path on p1, duplicate the grey node on both p2 and p3,

28 DAG Scheduling in the BSP Model

and then compute the top and middle paths on p2 and p3, respectively, again achieving a
makespan of 5.

C Complexity for specific DAG classes

C.1 Proof of Theorem 7
C.1.1 Chain DAGs
We first show that for chain DAGs, there exists an algorithm that finds the best BSP schedule,
and has a running time that is polynomial in n.

Proof of Theorem 7 for chain DAGs. The key observation is that the optimal BSP schedule
in chain DAGs always consists of either 1, 2, ..., or P supersteps; more specifically, the
optimum uses at most (P − 1) rounds of communication (for clarity, we prove this separately
below in Lemma 17). We then consider each case separately, i.e. the best possible solution
assuming that the number of supersteps is 1, ..., or P , and then select the best of these to
find the optimum.

Now assume that the number of supersteps is some fixed S ∈ [P]. More specifically,
we will assume that the total communication cost is (S − 1), and then for convenience, we
assume that these (S − 1) rounds of communication indeed happen in different supersteps.
If one of the supersteps in the optimum actually had a communication cost of more than 1,
then we can split this into several supersteps of communication cost 1 each, and simply leave
the computation phase of the newly created extra supersteps empty.

If the communication cost of a BSP schedule is S, then this means that there are at
most P · S values communicated altogether. In fact, this implies that we can iterate over
all the possible values v and source and target processors p1, p2 that took part in this
communication: with n nodes and P processors, there are only n · P 2 + 1 values for each
communication step (including the possibility that this communication step is not used),
and hence the number of possible configurations for communication is upper bounded by
(n · P 2)P ·S , which is still polynomial in n. We will iterate through all these configurations,
find the best possible cost for each of them, and simply return the best of these. Note that
many of the configurations are actually invalid, e.g. if p1 = p2, or v is sent multiple times
from p1 to p2, but filtering these out is just a technicality.

Hence consider a given configuration for communication. Note that for each of the chains
that have one (or more) of the communicated nodes, this already determines the assignment
of each node in the chain to a processor: if a node v is sent from p1 to p2, the only possible
reason for this in a chain DAG is that the part of the chain up to v was executed on p1,
whereas the part starting after v on p2. For convenience we will even assume more than
this: that for these chains, we also know the assignment τ for each node. Indeed, since
there are at most P · S chains with communications, and splitting each chain (of length at
most n) between the S supersteps monotonically can happen in at most

((n+S−1)
S

)
= O(nS)

ways, this again increases the number of possible cases to study by a factor O(nP ·S2) that is
polynomial in n.

Note that in each case we are studying, the communication costs for each superstep are
already fixed, and the analyzed chains already contribute a known amount of work cost to
each processor and superstep. As such, our only goal is to consider the remaining chains (free
chains) that take part in no communication (and hence each of them needs to be assigned to
a single processor entirely), and distribute them between the processors and supersteps in a
way that minimizes the total computation cost of the schedule.

P. A. Papp, G. Anegg and A. N. Yzelman 29

This can be accomplished with a method that is essentially a more complex variant
of the well-known dynamic programming solution for the multiway number partitioning
problem [18]. That is, we create a boolean table T of (P · S + 1) dimensions, where the first
P · S dimensions correspond to a combination of a given processor and superstep, and the
last dimension corresponds to the free chains. The first P · S dimensions of T will have cells
labeled from 0 to n, whereas the last dimension has cells labeled from 0 to the number of
free chains. A given cell of the table indexed by (1, 1) = a1,1, ... , (P, S) = aP,S and by
i in the last dimension will describe whether it is possible to assign the first i free chains
to processors and supersteps such that the number of nodes in each processor p ∈ [P] and
superstep s ∈ [S] is exactly ap,s. Initially, we set each cell of the table to false, except the
single cell that describes the exact number of nodes sorted into each processor/superstep
earlier due to communications, and has 0 as its last index.

We can then fill this table out systematically, iterating over the last index i (i.e. iterating
through the free chains). Given a current chain, there are P different processors that the
chain could be assigned to, and for a chain of length ℓ, there are

((ℓ+S−1)
S

)
= O(ℓS) ≤ O(nP)

ways to distribute it into the S supersteps. For each of these possible assignments, we
update the corresponding values in the subtable indexed by (i + 1) in the last dimen-
sion. That is, if we have an assignment (1, 1) = b1,1, ... , (P, S) = bP,S , and some
cell T ((1, 1) = a1,1; ...; (P, S) = aP,S ; i) of the table was set to true, then we also set
T ((1, 1) = a1,1 + b1,1; ...; (P, S) = aP,S + bP,S ; i + 1) to true. This allows us to fill the entire
table appropriately.

In the end, it simply remains to check all schedules in the last subtable (where all free chains
are assigned), compute the cost of their schedules, and select the one with lowest cost; this
gives us the best obtainable schedule for the given communication configuration. Note that
the table has size O(nP 2+1), and there are O(n) free chains and O(nP) possible assignments
for each free chain, so the running time of the algorithm is bounded by O(nP 2+P +2), which
is indeed polynomial in n. Running this process for each possible configuration still results
in polynomial time. ◀

It remains to show that we indeed need at most P supersteps.

▶ Lemma 17. The total communication cost in the optimal BSP schedule for a chain DAG
is at most (P − 1).

Proof. Note that the minimum work cost in a BSP schedule is lower bounded by both n
P

and the length ℓmax of the longest chain. We show that it is always possible to achieve
this work cost with a total of (P − 1) communication rounds, and thus get a total cost of
max(n

P , ℓmax) + (P − 1) · g. Since a higher number of communication steps could only yield
a higher cost, any such solution is clearly suboptimal.

For this, let us set P ′ = P and n′ = n initially, and consider the following iterative
procedure. In each step, we take the currently longest chain ℓ′

max. If ℓ′
max ≥ n′

P ′ , then we
assign the entire chain to a single processor, and discard both this chain and the processor,
hence updating our values to P ′ ← (P ′−1) and n′ ← (n′−ℓ′

max), and continue the process.
Otherwise, if ℓ′

max < n′

P ′ , then we terminate the iterative process, and develop a schedule for
the remaining chains in a single step. For this, we simply number the remaining nodes in all
chains from 1 to n′, considering the chains in an arbitrary order and iterating though each
chain from beginning to end, and then we assign the nodes {1, ..., n′

P ′ } to the first processor,
the nodes { n′

P ′ + 1, ..., 2·n′

P ′ } to the second processor, and so on.
We can then execute the nodes on the last P ′ processors in any desired order; whenever

we reach a node on p1 with a successor that is assigned to a different processor p2, we simply

30 DAG Scheduling in the BSP Model

close the computation phase, and add a communication phase to send this value from p1 to
p2 (and possibly others that are available). Since there are at most (P ′ − 1) nodes with a
successor assigned to a different processor, this results in a communication cost of at most
P ′− 1 < P − 1. The total work cost on each of the last P ′ processors is exactly n′

P ′ ; note that
our updates of P ′ and n′ always ensure that n′

P ′ ≤ n
P . On the processors discarded earlier

(assigned to a single chain), we simply compute the next node in each step, hence the work
cost on these is bounded by ℓmax. ◀

C.1.2 Discussion
Note that the polynomial algorithm above can easily be adapted to the case of having
non-zero latency L > 0: since each of the solutions we consider has a known number of
supersteps, we can simply add the latency costs to each candidate solution and compare the
different solutions this way.

As for adapting the algorithm to the other communication models in Table 3: switching
to broadcast operations has no advantage on chain DAGs, since each node has outdegree
at most 1, so each value is required on at most one further processor. In case of free data
movement, some further configurations of communication become valid, e.g. if v is transferred
from p1 to p2 and then from p2 to p3, then we can assume that the chain part starting at
the successor of v is computed on p3. However, this is only a slight change in the conditions
for evaluating the validity of each configuration.

We also note that the earlier work of [21] also studies optimal BSP scheduling for chain
DAGs. In particular, this work claims that the BSP scheduling problem is already NP-hard
on chain DAGs; this might look surprising at first glance, since it seemingly contradicts our
result. The proof of [21] uses a reduction to the partitioning problem (i.e. multiway number
partitioning with only 2 classes) in the case of S =1 supersteps, and invokes the fact that this
partitioning problem is NP-complete. This raises the underlying technical question of how
our problem input is actually encoded. That is, given some integers a1, ..., ak, the dynamic
programming algorithm for partitioning is a so-called pseudo-polynomial time algorithm.
This means that it only takes polynomial time in terms of the sum of the numbers

∑
ai

(which corresponds to n in our case), but if the numbers a1, ..., ak are provided in binary
form in the input, then this poly(n) time is in fact exponential in the number of input bits;
as such, from a complexity theoretical perspective, the problem is still NP-hard.

For the BSP scheduling of chain DAGs, this means the following. If we restrict our
interest to chain DAGs, then it indeed becomes possible to select a different, more compressed
encoding format for our inputs (only describing the length of each chain, as a binary number)
which makes the problem NP-hard. However, if we consider the input of the problem to
always be a DAG description, listing the nodes and edges in the DAG (which we believe to be
a more natural problem formulation in general), then the problem is not NP-hard anymore,
since our algorithm above has a running time that is polynomial in the number of nodes n.

We also point out that for this polynomial solution, it is once again a critical assumption
that the number of processors P is a constant, and does not scale arbitrarily with n. If P

were a part of the input (as assumed in some other works), then the problem very easily
becomes unreasonably hard; e.g. a reduction from 3-partition shows that the problem would
already be NP-hard for the simple case of chain DAGs and only S = 1 superstep, as also
noted in [21].

Finally, we note that [21] also carries out a more detailed analysis of the largest possible
number of supersteps that is required for an optimal schedule in chain graphs, showing both
an upper and lower bound of essentially P

2 for this. However, for our algorithm above, the

P. A. Papp, G. Anegg and A. N. Yzelman 31

simpler upper bound of P was already sufficient.

C.1.3 Connected chain DAGs
We now discuss the modifications required if our chains also have a common source node v0.

Proof of Theorem 7 for connected chain DAGs. The simplest possible schedule in this
case is to have a single superstep, assigning the entire DAG to p1 at a cost of n; we will
compare this to the rest of the solutions.

If our schedule has S ≥ 2 supersteps (and actual communication between them), then
naturally v0 will be in the first superstep. Furthermore, we can show that it is always optimal
to place v0 in a separate superstep. In particular, assume that some chain up to another
node v is also assigned to superstep 1 (and hence π(v0)). If v is the last node of the chain,
or if it has a successor v′ assigned to π(v′) = π(v0), then we can simply reassign the chain
to superstep 2: this decreases Cwork

(1) by the length of the chain, increases Cwork
(2) by at

most the same amount, and incurs no communication. Otherwise, if v has a successor v′

assigned to π(v′) ̸= π(v0), then we can reassign the whole chain up to v to processor π(v′)
and superstep τ(v′). This still requires us to send one value from π(v0) to π(v′) (we can do
this in the same superstep as before), and as before, the work cost of superstep 1 is decreased
by at least as much as the work cost of superstep τ(v′) is increased.

After all these reassignments, v0 is in a superstep of its own, and only affects the
remaining part of the DAG in a very simple way: if we have a chain starting with a processor
different from π(v0), then this will incur an extra communication step from π(v0). However,
with P processors and a single value v0, this means at most (P − 1) extra communication
steps. Indeed, applying the method in Lemma 17 still provides a solution of cost at most
max(n−1

P , ℓmax) + 2 · (P − 1) · g + 1, even if all processors appear in the beginning of some
chain and thus v0 is sent to them all in the first superstep, so Ccomm

(1) = P − 1. This shows
that the optimal schedule still consist of at most (2 · P − 1) supersteps, since otherwise it
would produce a higher cost.

Hence we can still execute the same dynamic programming approach as before, but now
allowing (2 · P − 2) different communication steps, including steps that send the value of v0.
Naturally, the communications of v0 must be handled slightly differently. As they determine
the superstep s when the value of v0 becomes available on each processor p, the solutions
need to be filtered out according to this: before superstep s, no segment of any chain can
be assigned to this p. Nonetheless, it is still only a technicality to check the validity of
each configuration (in polynomial time), and then divide the free chains into supersteps and
processors according to the availability of v0. The table can be filled in each configuration
the same way as before to find the optimal schedule. ◀

In the FS model, the method above only needs a minor modification, as v0 may now
be relayed between the processors; however, the communication steps in each configuration
still determine when v0 becomes available on each processor. On the other hand, in the
broadcast models, the algorithm actually becomes significantly simpler, since in a single
round of communication, v0 reaches all the processors in superstep 1, and from this point
the construction behaves like a chain DAG, not affected by v0 at all.

C.2 Proof of Theorem 8
We prove Theorem 8 through a reduction from the clique problem: given an undirected
graph G′(V ′, E)′ and a number k, the task is to find a subset of k nodes in V ′ such that

32 DAG Scheduling in the BSP Model

any two of them is adjacent. This problem is long known to be NP-complete [18]. Our
reduction will only have P = 2 processors, hence it applies to any of the communication
models equivalently.

Proof of Theorem 8. Consider some fixed parameters M1, M2. The main tool in our
construction is a so-called 2-level block U = (U (1), U (2)), which consists of (i) a set U (1)

of M1 nodes which will be on the first level of the DAG, and (ii) another set U (2) of an
unspecified number of nodes on the second level of the DAG, such that each node in U (1) has
an edge to each node in U (2). We call |U (2)| the size of the block; in our construction, this
will always be a multiple of M2. Intuitively, such a block will ensure that each node in U (2)

has to be assigned to the same processor; if the block is split, then each node in U (1) will
need to be communicated to at least one of the processors used in U (2), hence resulting in a
communication cost of at least M1, which will be too large to provide a reasonable solution.

Given a clique problem on a graph G′(V ′, E)′ on n′ = |V ′| nodes and a parameter k, we
turn this into a BSP scheduling problem as follows.

For each node v′ ∈ V ′, we create a 2-level block Uv′ of size |U (2)
v′ | = M2. Besides, we add

two further blocks Up1 and Up2 of sizes (2 · n′ − k) ·M2 and (n′ + k) ·M2, respectively.

Then for each edge (v′
1, v′

2) ∈ E′, we add a single node ve′ on the first level of the DAG,
and draw an edge form ve′ to (i) an arbitrary node in U

(2)
v′

1
, (ii) an arbitrary node in U

(2)
v′

2
,

(iii) an arbitrary node in U
(2)
p1 .

We add |E′| −
(

k
2
)

more nodes v̂i to the first level of the DAG, and add an edge from v̂i

to (i) an arbitrary node in U
(2)
p1 , and (ii) an arbitrary node in U

(2)
p2 .

Finally, we add n′ ·M1 +
(

k
2
)

isolated nodes to our DAG; we will imagine these nodes to
be a part of level 1.

For our parameters, we select M1 := |E′|+ 1 and M2 = M1 · (n′ + 1) + 2 · |E′| · g. Note
that the size n of the resulting DAG construction is still polynomial in the size of G′.

In the derived BSP scheduling problem, we set P = 2, L = 0, choose g as a small constant
(e.g. g = 2), and set the allowed cost to C0 = n

2 + (|E′| −
(

k
2
)
) · g.

We first outline the main idea of the construction, and then discuss the technical details
separately.

(i) The computational cost of any schedule is at least n
2 , so any schedule within the allowed

cost can have at most |E′| −
(

k
2
)

communication steps. As outlined before, assigning a
block to several processors results in a cost of M1 > |E′|; hence in each valid schedule,
the level-2 part of each block must entirely be assigned to the same processor.

(ii) In the second level of our DAG, the blocks in our construction essentially allow us to
adapt the packing technique in the recent work of [48] to our BSP scheduling problem,
ensuring that we have the desired number of blocks assigned to both processors in a
reasonable solution. That is, assigning both U

(2)
p1 and U

(2)
p2 to the same processor would

result in a work cost of at least 3 · n′ ·M2, which is significantly larger than C0. As such,
U

(2)
p1 and U

(2)
p2 are assigned to different processors; assume w.l.o.g. that these are p1 and

p2, respectively.

(iii) Now consider the second level of the blocks Uv′ , which all have size M2. One can then
observe that we need to assign exactly k of these to p1 and (n′−k) of them to p2, otherwise,
the work cost will be split in a very imbalanced way between p1 and p2 on the second

P. A. Papp, G. Anegg and A. N. Yzelman 33

level, and since most of the nodes are in this level, this also makes the total work cost too
high.

(iv) As for communication costs, the nodes v̂i all have a successor on both processors, hence
they will all incur a communication step, regardless of which processor they are assigned
to. Also, since U

(2)
p1 is assigned to p1, each value ve′ is required on processor p1 at some

point; as such, node ve′ will incur a communication step if and only if one of its other two
successors is assigned to p2.

(v) The construction allows us to distribute the work cost evenly between the two processors
on both levels, hence resulting in a total work cost of n

2 . As such, a valid solution must
have a communication cost of (|E′| −

(
k
2
)
) · g at most, which means at most 2 · (|E′| −

(
k
2
)
)

communication steps, half of them from p1 to p2 and the rest in the reverse direction.

(vi) The isolated nodes incur no communication, and neither do the first levels of blocks if
they are assigned to the same processor as the second level. The nodes v̂i already incur
|E′| −

(
k
2
)

communication steps. As such, the communication cost will be determined
by the number of ve′ that have a successor assigned to p2. To limit the number of
communications to 2 · (|E′| −

(
k
2
)
) altogether, we need to ensure that the nodes ve′ also

incur at most |E′| −
(

k
2
)

communication steps, i.e. there are
(

k
2
)

distinct nodes ve′ that
have all of their successors assigned to p1.

(vii) Altogether, this means that we need to select k of the second-level blocks U
(2)
v′

1
to assign to

p1, such that the number of edges induced by these k nodes is at least
(

k
2
)
, i.e. the nodes

form a clique. Hence a BSP of cost C0 exist if and only if G′ contained a clique of size k.

More formally, given a clique of size k in G′, we can assign (both levels of) the corres-
ponding k blocks and Up1 to p1, and (both levels of) the remaining blocks to p2. This ensures
that the number of level-2 nodes assigned to both processors is 2 · n′ ·M2, and the number of
level-1 nodes assigned to p1 and p2 is (k + 1) ·M1 and (n′ − k + 1) ·M1, respectively. We
assign all the nodes ve′ also to p1, the nodes v̂i to p2, and as for the remaining isolated nodes,
we assign (n′ − k) ·M1 of them to p1, and k ·M1 +

(
k
2
)

of them to p2. This ensures that the
number of level-1 nodes assigned to both processors is (n′ + 1) ·M1 + |E′|. As such, we can
assign all nodes on the first and second levels, respectively, to supersteps 1 and 2, and the
total work cost of the two supersteps will be n

2 . Finally, the nodes v̂i will be sent from p2
to p1, and the ve′ not corresponding to the clique edges will need to be sent from p1 to p2,
resulting in a communication cost of (|E′| −

(
k
2
)
) · g. This indeed provides a BSP schedule of

total cost C0.
Conversely, assume that a BSP schedule of cost C0 exists. As discussed before, this

implies that the second level of all blocks is assigned to a single processor, U
(2)
p1 and U

(2)
p2

are assigned to p1 and p2, respectively, and exactly k of the U
(2)
v′ are assigned to p1. The

work cost of the solution must be n
2 at least. For the communication cost to be at most

(|E′| −
(

k
2
)
) · g, we can have at most 2 · (|E′| −

(
k
2
)
) communicated values; after subtracting

the v̂i, only |E′| −
(

k
2
)

communicated values remain. All the edges in E′ not induced by the
k chosen nodes will result in a communication step, so to keep the number of these steps
below (|E′| −

(
k
2
)
), the k nodes must induce

(
k
2
)

edges at least, i.e. they must form a clique.
It remains to discuss a few technical details regarding our parameters. Note that the

number of nodes in the construction is

n = 2 · (M1 · (n′ + 1) + |E|′) + 4 · n′ ·M2 = O(n′2 · |E′|) .

34 DAG Scheduling in the BSP Model

For point (ii) of the argument above, we also need to show that 3 ·n′ ·M2 > C0; indeed, since

C0 = M1 · (n′ + 1) + |E|′ + 2 · n′ ·M2 +
(
|E′| −

(
k

2

))
· g ,

we only need to show

n′ ·M2 > M1 · (n′ + 1) + |E|′ +
(
|E′| −

(
k

2

))
· g ,

which follows from our choice of M2 = M1 · (n′ + 1) + 2 · |E′| · g. Also, for point (iii), note that
if we choose to assign more or less than k of the blocks Uv′ to p1, then one of the processors
will be assigned at least (2 · n′ + 1) ·M2 nodes on the second level. Even if all nodes on the
first level are assigned to the other processor, the number of nodes on this processor will be
too high. In particular, we have (2 · n′ + 1) ·M2 > C0; this is equivalent to

M2 > M1 · (n′ + 1) + |E|′ +
(
|E′| −

(
k

2

))
· g ,

which once again holds due to our choice of M2. As such, a work cost of at least (2 ·n′ +1) ·M2
indeed cannot provide a valid BSP schedule, so second-level blocks must be distributed in a
completely balanced fashion. ◀

C.3 Proof of Theorem 9
For in-trees, we provide a reduction from the so-called 3-partition problem. In this problem,
we are given a list of m positive integers a1, . . . , am, with m = 3·m′ for some other integer m′.
The integers are known to satisfy

∑m
i=1 ai = m′ · T for some integer T , and also T

4 < ai < T
2

for all i ∈ [m]. The goal is to divide the numbers into m′ distinct subsets of size 3 each, such
that the sum in each subset is exactly T . This problem is known to be NP-hard [18] (in the
strong sense, i.e. even if the input has length m · T).

Our construction to convert a 3-partition problem to a BSP scheduling task in in-trees
will be described in several steps. We first describe the gadgets used in the proof, and then
prove the main properties of our construction. We then show in a separate step how to
embed the input 3-partition problem in our construction. Finally, we sort out the technical
details.

For ease of presentation, we will often describe our BSP schedule as if it was a classical
scheduling approach, i.e. as if the nodes within each superstep were ordered in an arbitrary
topological ordering, and hence each single node is executed in a given integer time step.

C.3.1 Main ideas and tools
Consider some integer parameters M , M0, A, B; we will decide the values of these later.
Intuitively, we will have M > M0 and B > A, and M and M0 will be much larger than B

and A. The parameters will satisfy M0 + A < M < M0 + B. Altogether, our construction
will initially consist of n = 4 ·m · (2 ·M + M0) + 4 nodes, and P = 4 processors. We will
choose g as an arbitrary constant, e.g. g = 2.

The main gadgets in our construction will be so-called cones: a cone on k nodes consists
of a single node u, and (k − 1) further nodes that have an edge to u. We call node u the top
of the cone. A cone essentially ensures that we need to assign most of these k nodes to the
same processor; indeed, if k0 of the predecessors of u are assigned to a different processor
than u, then this results in a communication cost of at least k0, since these values all need

P. A. Papp, G. Anegg and A. N. Yzelman 35

to be sent to u. Due to this, we will refer to the processor assigned to the top node of the
cone as the processor assigned to the cone itself.

The allowed scheduling cost in our derived BSP problem will be set to C0 = n
P + 3·m·g.

Since the work cost is at least n
P , this will mean that any BSP schedule can have at most

3 ·m communication rounds. We will show that this amount of communication is indeed
needed in any reasonable schedule, and hence the work cost needs to be exactly n

P . In other
words, this implies that every processor needs to execute a node in every time step.

Our construction will contain a final cone of size n
P where the top node u0 is a sink node

of the DAG. Furthermore, there will be 3 ·m further cones in the DAG (called semi-final
cones, to be described in detail later), each of size at least M0, and the top node of each of
them will have an edge to u0. Altogether, this implies that the top node of each semi-final
cone has to be assigned to a different processor than u0; if not, then the given top node and
u0 together have more than n

P +M0 immediate predecessors. This cannot be a solution below
the cost limit: if at least n

P + M0− 3·m of these predecessors are on the same processor as u0,
then that yields a too high work cost (since our parameters will ensure M0 > 3 ·m · (g + 1)),
otherwise we need to communicate more than 3 ·m values to this processor, yielding a too
high communication cost.

This implies that to each of the 3 ·m semi-final cones, we will need to assign a different
processor than π(u0). This already gives us 3 ·m values that need to be communicated to u0
from a different processor, hence establishing a communication cost of at least 3 ·m, and as a
result, a work cost of exactly n

P .
Note that this also means that each of the (n

P − 1) predecessors of u0 within the final
cone needs to be assigned to π(u0), otherwise the communication cost grows even higher. As
such, there will be one processor in our schedule, let us call it p4, which is not particularly
interesting: it will compute the source nodes of the final cone in the first (n

P − 1) steps, u0 in
the last step, and nothing else in the DAG.

Also note that having 3 ·m values to transfer from semi-final cones to p4, which is exactly
the allowed communication cost, implies that one of these values need to be sent to p4 in
every round of communication. This means that whenever we need to communicate any value
within our DAG, we always need to have a new semi-final cone already computed and ready.
Hence intuitively, the semi-final cones ensure in our solution that each of the communication
rounds must happen at earliest at a given point in time, since the next communication round
can only be used once a new semi-final cone is computed.

Besides the cones, our construction will also have a critical path of length n
P ; hence to

have a work cost of n
P , we will need to make sure that the i-th node of this path is computed

in the i-th step for all i ∈ [n
P]. However, there will be further cones attached to this path,

which, intuitively speaking, require you to have communication rounds at latest in given
supersteps, otherwise we cannot execute all the predecessors of the path node and hence
cannot compute the i-th node in time. Together with the semi-final cones above, this will
ensure that communications have to happen exactly at given time steps. This will be crucial
for our reduction.

C.3.2 Construction outline
Our construction will essentially consist of m identical copies of a set of gadgets. We now
describe these gadgets and discuss the properties they ensure. We will later show how to
customize each gadget slightly to represent a concrete number ai of the 3-partition problem.

As for the semi-final cones, 2·m of these will simply be cones of size M , with their top
nodes having an edge to u0. The remaining m, however, we be turned into so-called triple

36 DAG Scheduling in the BSP Model

cones. For each triple cone, we create nodes u1, u2, u3 that are the top nodes of a cone of
size M0, B and A, respectively, and we then add the edges (u3, u2) and (u2, u1) to our DAG
(besides the edge (u1, u0), which was already mentioned before).

As for the critical path, we will divide it into m continuous segments of size (2·M + M0),
plus a single final node. For each of the segments, we add 3 separate cones such that the top
node of the cone is a given node of the segment. In particular, for each segment, we add
(i) a cone of size (M −A) with its top being the (M + 1)-st node of the segment (from the
source), (ii) a cone of size (M −B) with its top being the (2 ·M + 1)-st node of the segment,
and (iii) a cone of size M0 with its top being the (2 ·M + M0 + 1)-st node, i.e. the node
immediately after the segment. These 3 top node split the segment into 3 parts.

This implies that the i-th top node on the critical path (let us denote it by vi) has at
least i · (2·M0 −B) predecessors. We will use this to show that at least one communication
round is always needed between v(i−1) and vi for all i ∈ [3·m]. For i = 1, this is clear: the
top node v1 has (2 ·M −A) predecessors, and recall that it has to be computed exactly in
the (M + 1)-st step. With (2 ·M −A) > M , this results in a too high work cost if done on a
single processor; as such, these predecessors must be split among at least two processors,
and hence at least one communication round is required.

Also recall that one of the semi-final cone values has to be transmitted in each commu-
nication round, so in the first M steps, another work cost of at least M has to be invested
into one of the semi-final cones (either a triple cone or a regular one). Since there is at most
A work cost available that is not used on the critical path or the cone attached to it, the
earliest possible time for finishing the semi-final cone (and hence having the computation
step) is at time (M −A). Also, since all these nodes have to be computed, the processors
can compute at most A further nodes in the first M steps besides those mentioned so far.

The same argument can be continued in an inductive way. Node vi has i · (2 ·M0 −B)
predecessors at least. Up to the time when we compute v(i−1), there are at most (i−1) ·B
nodes in the DAG that have been computed, except for (i) the critical path component up to
v(i−1), (ii) i semi-final cones that were completely finished, and (iii) the final cone which we
disregarded for convenience. As such, out of the at least (2·M0−B) nodes in the path between
v(i−1) and vi and the cone attached to vi, there are still at least (2 ·M0 −B)− (i− 1) ·B
nodes that are not yet computed. There are either M or M0 time units between computing
v(i−1) and vi; if we have (2 ·M0 −B)−m ·B > M , this ensures that we cannot execute all
the remaining nodes on a single processor, so another round of communication is required
before vi. Once again, at least M work cost is needed to finish another semi-final cone by
this round; this shows that the number of extra nodes that are computed (besides the path
up to vi and the new semi-final cone) is again upper bounded by (i·B).

Hence one round of communication is needed between each two top nodes on the critical
path; since we can only have 3 ·m communication steps altogether, this means that there
is exactly one round of communication between each two top nodes. This also ensures
the convenient property that the cones attached to the path are all entirely assigned to
single processor: otherwise, they would incur further communication cost without reasonably
splitting the work cost between v(i−1) and vi. As such, between each pair v(i−1) and vi,
the path consists of two continuous parts, with the nodes in the first and second parts are
assigned to to different processors.

As a detail, note that we also add 2 isolated nodes to the construction to increase the
number of sink nodes from 2 to 4, and hence ensure that all processors can still compute in
the last step.

P. A. Papp, G. Anegg and A. N. Yzelman 37

C.3.3 Scheduling the construction
We now go over the segments in another induction from source to sink, and show that each
segment can only be scheduled in a specific way without violating the allowed cost C0. Let
us consider the first segment in detail. Recall that all three parts of this segment must have
exactly one communication round.

We begin with the first part of the segment, up to v1. This has a path of length (M + 1)
ending in v1, and a cone of size (M −A) with v1 as its top node. To compute v1 by time step
(M + 1), we need to compute all the (2M −A) predecessors of v1; this leaves only (M + A)
further nodes we can compute on our 3 processors in the first M times steps. Note that we
also need to finish one of the semi-final cones by time step M in order to send a value to p4
in the first communication round. As the triple cones all have size M0 + A + B > M , we can
only achieve this by computing one of the semi-final cones of size M .

There are also several other observations we can make. Firstly, to avoid further commu-
nication, the semi-final cone must be assigned entirely to a single processor; let us call this
w.l.o.g. p3. This implies that the communication must happen after exactly M steps (at the
last possible point in time), i.e. we have Cwork

(1) = M . As such, another processor p1 must
process the first M nodes of the path, and a third one p2 must process the (M −A) nodes
in the cone on the path (and also v1, but this is already in the computational phase of the
next superstep). As such, in the communication phase of superstep 1, p1 sends the M -th
node of the path to p2, and p3 sends the top node of a semi-final cone to p4. Besides this, p2
can compute A further nodes in another part of the DAG.

Now consider the second part of the segment, up to v2, and time steps (M + 1) to 2·M .
This is again a path of length (M + 1) ending in v2, and a cone of size (M −B) attached
to v2. However, also note that the beginning of the path must be assigned to τ(v1) = p2,
even up to the (2M −B)-th node, otherwise the remaining path and the cone would contain
more than M nodes altogether, and hence would require another communication step. This
means that most of the capacity of p2 in this interval is used on the path. In particular, we
cannot use p2 to compute another semi-final cone, since even with the leftover computations
from earlier, we have at most (A + B) steps to do this, and both M and M0 are significantly
larger than (A + B).

Hence another semi-final cone must be computed on p1 or p3. Note that the role of these
two processors is symmetrical here: the nodes previously computed by them have no direct
connection to the rest of the DAG, and they both sent a value in the first communication
step, and did not receive one. Assume that the semi-final cone is computed on p1. This
cannot be a triple cone, since even with the leftover from the earlier steps, we can compute
at most (A + M) < (A + B + M0) nodes on a single processor, and using more processors
requires extra communication. As such, p1 must compute a regular semi-final cone of size M

in the interval [M + 1, 2 ·M], which again shows that the second round of communication
happens after time step 2 ·M . This means that p2 computes the path up to length 2·M , and
p3 computes the attached cone, and then node v2 in step (2·M + 1). In the communication
round, we send a value from p2 to p3 and from p1 to p4. There are B leftover computations
that p3 can execute in this time interval.

Finally, consider the third part up to v3; recall that this is a shorter part, corresponding
only to the time steps (2·M + 1) to (2·M + M0). Once again the beginning of the path is
assigned to p3, up to at least node (2·M +M0)−B, otherwise the rest could not be completed
in time by a single processor, even with the leftover from earlier. Then 2·B is again much
smaller than M0, so the semi-final cone must be computed by a processor other than p3.
However, p1 and p2 only have M0 time steps in this interval, plus p2 has A leftovers, and

38 DAG Scheduling in the BSP Model

M0 + A < M ; recall that p3 also has B leftovers, but this cannot be combined in a semi-final
cone with p1 or p2.

This means that it is not an option to compute a regular semi-final cone by time step
(2 ·M + M0); the only way to transmit a value to p4 in time is to compute a triple cone.
Note that a triple cone has A + B + M0 nodes, and the path component between v2 and
v3 has 2·M0 nodes, so this is also only possible if we use all the 3·M0 computations in our
time interval, plus the (A + B) leftovers from earlier; in other words, no leftovers remain
after this step. The top of the triple cone cannot be finished before step (2·M + M0), since
then all three processors would need to actively work on the path and the attached cone
in the remaining steps, resulting in extra communication; hence the top node u1 is only
computed in step (2 ·M + M0), and communication can only follow afterwards, again at the
last possible point in time.

This also means that p3 is computing the path until node (2·M + M0), and not doing
any other computations in this interval. Then the B leftover steps of p3 from earlier cannot
be used anywhere else than in the cone of size B in the triple cone; all other cones are
smaller or larger (i.e. sizes A or M0), so otherwise some cone would be split, incurring extra
communication. Since these leftovers are computed between time steps (M + 1) to 2·M , the
cone of size A in the triple cone must be computed by the leftovers of p2 in the interval 1 to
M , to make u3 already available to u2 by time step 2 ·M at the latest. The cone attached
to v3 and the largest cone in the triple cone are then assigned to p1 and p2 between time
steps (2·M + 1) to (2·M + M0) in either way; we will assume that p1 computes the attached
cone and p2 computes the semi-final cone, since this nicely maintains the periodic use of the
processors for the next segment that follows after v3.

Note that the assignment described above indeed provides a schedule with the desired
cost: all processors are computing in each time step, so the work cost is (2 ·M + M0). The
assignments in the triple cone also require further communication: sending u3 from p2 to p3
in superstep 1, and sending u2 from p3 to p2 in superstep 2. However, this does not increase
the cost of the given h-relations.

The same proof can be used in an inductive fashion for the next segments that follow.
In particular, the arguments above ensure that we need to use all the 3 processors in all
(2 ·M + M0) time steps, so no other nodes are computed. The only connection between
the already assigned part of the DAG and the rest is the node v3, which is assigned to p1;
however, the role of the processors in the rest of the schedule is symmetrical, so this is not
a restriction in any sense. The number of regular semi-final cones is decreased by 2, the
number of triple cones by 1; as such, the unassigned part of the DAG behaves exactly like
the same construction, but now containing only (m− 1) segments.

This induction proves that in each segment of the DAG, a valid scheduling in this in-tree
is only possible by repeating the steps described above for each segment from the beginning
to the end of the critical path.

C.3.4 Making the communication times fixed
In our actual reduction, the different segments will not be so flawlessly separated from each
other as described above; in particular, we might have a very small number of leftover nodes
from the previous segments. While the number of these nodes will be much less than A or
B, they could still influence with the behavior of the construction, unfortunately, so we need
a further technical step to prevent this.

More specifically, we will sort the segments into consecutive triplets, i.e. segments 1 to 3,
segments 4 to 6, and so on, referring to each such triplet as a 3-segment. Note that each

P. A. Papp, G. Anegg and A. N. Yzelman 39

such 3-segment has exactly 9 communication steps. The main idea of the reduction is that
each triple cone will correspond to a number ai in the original 3-partition problem. Recall
from above that any schedule assigns each triple cone to a given segment, so a 3-segment
corresponds to 3 consecutive numbers. We will ensure that the schedule is only valid if the 3
numbers (i.e. triple cones) assigned to each of our 3-segments sum up to exactly T .

However, as mentioned, this method will result in a few leftover nodes within the 3-
segment, from the first to the second segment, and from the second to the third segment
(but no leftover after the entire 3-segment). The problem with this is that e.g. in segment
2, these leftover nodes from segment 1 might be used to pre-compute some nodes of the
semi-final cones earlier, which might allow us to execute e.g. the first communication of
the segment after less than M steps. This in turn can allow us to assign (A + 1) nodes to
processor p2, and only (M − 1) to p1, in contrast to what we described above, and with that
the correctness of the reduction would not be guaranteed.

In order to resolve this, we further expand our construction to ensure that the com-
munication steps happen at exactly the fixed time steps described in Section C.3.3. More
specifically, we create 4 identical copies of the DAG described so far (and also increase the
number of processors to P = 16, so the work cost n

P remains unchanged). While this might
sound like a major modification, in fact, each of the 4 copies of the construction will still
behave in the same way as outlined before. In particular, the same induction method as
in Section C.3.2 still shows that a separate communication round is needed between each
v(i−1) and vi: there are still at most 4 · (i− 1) ·B leftover nodes in the DAG until computing
v(i−1), so (2 ·M0 −B)− 4 ·m ·B > M implies that the next part of the path again requires a
communication step, and since we also need to compute 4 semifinal cones (of size at least
M), the number of leftover nodes for the next induction step is at most (4 · i ·B).

It then follows that each of the 4 copies can once again only be scheduled in the way
outlined in Section C.3.3. In particular, the same arguments show that the 4 groups of A

leftover nodes from the first part and the 4 groups of B leftover nodes from the second part
of the segment can only be on 8 distinct processors; this means that none of these leftovers
can be combined in the same cone anyway, and thus each of the 4 segments can still only be
scheduled as discussed before. As a technical note, in the third part of the segment, we can
now assume B > 4 ·A for simplicity to make it easier to see that the size-B leftover groups
can only be used for the cones of size B.

The reason for creating 4 distinct copies of the DAG is as follows. In our reduction, we
will adjust the cone sizes in one of the 4 copies of the construction (we call this the main
copy) to model the 3-partition problem. However, as mentioned before, this embedding of
3-partition in the main copy will also result in up to 3 very small groups of leftover nodes
between the segments, on (at most) 3 distinct processors. Having 4 copies ensures that in
each part of every segment, there is at least one copy where none of these inter-segment
leftover nodes is used, and hence it is guaranteed that the semi-final cones in this copy are
indeed only finished after M/M/M0 time steps (in the first/second/third part of a segment,
respectively). As such, regardless of the remaining 3 copies, the earliest possible times to
execute each communication step in our schedule are still the time steps discussed in Section
C.3.3.

We note that this method only ensures that the communication times are fixed; the small
leftover groups may still be used to pre-compute a part of some cones, and hence finish these
cones slightly earlier. However, in this case, we end up with the same number of leftovers on
the same processor after the cone is finished, and hence this does not affect the properties of
our construction.

40 DAG Scheduling in the BSP Model

C.3.5 Embedding 3-partition
Note that to prove the properties of the construction above, it was only necessary to have an
approximate value for the parameters A and B; intuitively speaking, any values in the same
magnitude would guarantee these properties. As such, the key idea of the reduction is to
consider the main copy of our construction, and fine-tune the values A and B here to model
our 3-partition problem.

In particular, we will consider the m triple cones in the main copy, and turn each of them
into a representation of the number ai in the 3-partition problem. For this, we replace the
cone of size A in the triple cone by a cone of size (A + ai), and we replace the cone of size B

by a cone of size (B + 2·T − ai).
Furthermore, the cones attached to the critical path are also modified in the main copy. In

particular, in each 3-segment, the sizes of the cones attached to vi, ..., v(i+8) were originally

(M −A, M −B, M0, M −A, M −B, M0, M −A, M −B, M0)

in order; we replace this by the new sequence

(M − (A + T/2), M − (B + 5 · T), M0, M − (A + T/2),
M −B, M0, M −A, M −B, M0) .

This creates at most 6·T further leftover computation steps within each such 3-segment in
the main copy. As discussed before, this does not affect the time when the communication
steps happen.

Furthermore, note that the number of nodes in any triple cone sum up to (A + B + 2·T)
(not considering the cone of size M0), so three triple cones add up to 3 · (A + B + 2·T). On
the other hand, in any 3-segment, the number of leftover nodes from the attached cones of
the path is now also

2 · (A + T/2) + (B + 5 · T) + A + 2 ·B = 3 · (A + B + 2 · T) .

This means that in order to finish three triple-cones by the end of the 3-segment, i.e. in
any valid schedule, there can be no leftover nodes at all by the end of the 3-segment: every
computation step of each processor is required.

Assume w.l.o.g. that the triple cone chosen in the first segment (of a given 3-segment)
corresponds to the number a1. Since the triple cones of the main copy have cone sizes larger
than A and B, in the first segment these can only be computed with the corresponding
leftovers groups of size (A+T/2) and (B+5·T) from the attached cones in the main copy. This
implies that a valid scheduling of the first segment results in (A + T/2)− (A + a1) = T/2−a1
leftover nodes on one processor, and (B + 5·T)− (B + 2·T −a1) = 3·T + a1 leftover nodes on
another processor after the segment. As discussed above, these must be used to pre-compute
other nodes in the same 3-segment; in particular, they need to be used to compute some of
the “A-type” and “B-type” cones (i.e. the cones of size (A + ai) and (B + 2 ·T − ai)) in the
main copy, since the corresponding processors will not have enough computation steps for
these cones in segments 2 and 3 by design.

Now consider the second segment, corresponding to some number a2. Here the cone
of size (B + 2·T − a2) cannot be computed by any of the leftover groups in this segment
(they all have size at most B), so we need to use the leftovers from the previous segment.
Moreover, the (T/2− a1) leftovers from the previous A-type cone cannot be used for this
cone, since these nodes would still not be enough to compute it in time, as

(T/2− a1) + B < B + 2 · T − a2 .

P. A. Papp, G. Anegg and A. N. Yzelman 41

Hence to compute the B-type cone in the second segment, the leftover nodes from the
previous B-type cone need to be used, and hence this second B-type cone in the main copy
needs to be assigned to the same processor. As for the cone of size (A + a2), this cannot be
combined from a leftover group of size A and the (T/2− a1) remaining leftovers from the
previous segment, since a2 > T/2− a1 due to ai > T/4. Hence this is computed again with
the group of size (A + T/2) from the main copy. Then after the segment, this results in a
group of

B + (3·T + a1)− (B + 2 · T − a2) = T + a1 + a2

leftover nodes due to the B-type cone, and a group of

(A + T/2)− (A + a2) = T/2− a2

leftover nodes due to the A-type cone, besides the further (T/2 − a1) leftovers from the
first segment. The (T + a1 + a2) leftovers cannot be on the same processor as the other
two groups, since the all the A-type and B-type cones are assigned to different processors
in every segment. However, the (T/2− a1) and (T/2− a2) may be on the same processor,
forming a common group of (T − a1 − a2) leftover nodes; in fact, this is the only possibility
that will allow us to finish the triple cone in the third segment.

In the third segment (where the triple cone corresponds to a3), there is again a cone
of size (B + 2 ·T − a3). We again cannot use the at most (T − a1 − a2) leftovers from the
A-cones here, since even together with a group of size B, this is still only

(T − a1 − a2) + B < B + T < B + 2 · T − a3

nodes, which is once again not enough. Hence for the cone of size (B + 2 ·T − a3), we again
need to use the (T + a1 + a2) leftovers from the previous B-cones. Furthermore, recall that
all the leftovers are needed at this point, so the remaining (T − a1 − a2) leftovers must be
used on the cone of size (A + a3). In particular, to finish both the A-cone and the B-cone in
time, we need to have

(T − a1 − a2) + A ≥ A + a3

(T + a1 + a2) + B ≥ B + 2 · T − a3 ,

which only hold together if we have exactly a1 + a2 + a3 = T .
This shows that we can only produce a valid schedule for each 3-segment if we can

partition the numbers into groups of 3 that each sum up to T . On the other hand, given
such a 3-partitioning, the method above indeed produces a schedule of cost C0; in particular,
note that our method described in Section C.3.3 uses the same processor for each A-cone
and B-cone, respectively, so it can indeed use the leftover nodes in the way described above.
This completes the reduction.

C.3.6 Technical details
It remains to discuss some technicalities.

Note that with the exception of final cones, it could still happen that a cone is not entirely
assigned to the same processor. This does result in extra communication towards the top node,
but this is not always prohibitive, because some processors are idle in given communication
steps, and hence in some cases, they could execute these extra communications without
increasing the cost. We know that any cone must have strictly less than 3·m such outlier
nodes that are assigned to a different processor than the top, otherwise this already produces

42 DAG Scheduling in the BSP Model

a cost of more than C0. However, these few outlier nodes in the cones could still cause small
problems in the construction: they may allow us to finish the cones (and hence possibly
execute some communication steps) earlier. As a result, the communication step on the
main path could happen several nodes before vi, and the workload may be split differently
between the processors assigned to the path and to the attached cone (producing leftover
groups of slightly different size than discussed before).

To prevent this, we consider a further parameter D, and we multiply the size of each
gadget in our construction by a factor D in the end; in particular, the size of all cones, and
the size of each part [vi, v(i+1)) of the critical paths. Note that there can be no leftovers at all
by the end of a 3-segment, and during each 3-segment, we process only O(1) different gadgets
(9 parts of the path, 9 attached cones, semi-final cones consisting of 15 cones altogether,
in 4 copies; altogether 132). Each of these gadgets can only increase/decrease the number
of leftover nodes on any processor by at most 3 ·m, by e.g. bringing a communication step
slightly earlier, or using some outliers instead of the processor assigned to a cone. Hence even
if these would add up, the number of leftover nodes on any processor can increase/decrease
by at most 132 ·3 ·m. As such, if we select D = O(1) ·m with a large enough constant (e.g.
3 ·132 ·3), then these small offsets in group sizes do not allow us to combine the leftovers in
our cones in any other way than described before; in particular, each side in our inequalities
can change by at most D

3 , while an original difference of 1 now corresponds to D nodes. As
such, even if we have a few outliers in some of the cones, this does not influence the behavior
of the construction.

As for our other parameters, note that the embedding of 3-partition can only result in
less than 6 · T further leftover nodes (besides A’s and B’s) in a given 3-segment. It would
be enough to make A larger than this; however, to emphasize the size difference between
the different kinds of gadgets in our constructions, let us select A = m · T (assuming that
m is much larger than 6). To ensure B > 4 ·A + 6 ·T , we choose B = 8 ·A. We then need
to ensure 2 ·M0 > M + (4 ·m + 1) · (B + 6 ·T); since we will have M < M0 + B, this is
satisfied if we ensure M0 > (4 ·m + 2) · (B + 6 ·T). Since m > 2 and B > 6 ·T , we can do this
e.g. by selecting M0 = 10 ·m ·B. To have M0 + A + 6 ·T < M < M0 + B, we then choose
M = M0 + A + 7·T . Finally, recall that the size of all gadgets is further increased by a factor
D = O(m). However, even in this case, the size n is still polynomial in m.

To ensure that T/2 is an integer, we also assume for convenience that T is divisible by 6;
otherwise, we can simply multiply all the ai by 6 to obtain an equivalent 3-partition problem.

Finally, note that the proof applies not only to the DS model, but also the other BSP
variants in Table 3. In particular, broadcasting offers no advantages in in-trees, and free data
movement also does not affect any of the properties of our construction.

D APX-hardness

To show that the problem does not allow a PTAS on general DAGs, we provide a reduction
from the MAX-3SAT(B) problem: given a boolean formula over N variables and M clauses
in conjunctive normal form, with each clause containing exactly 3 literals, and such that
any variable appears in at most B clauses for some constant bound B, the goal is to find a
boolean assignment to the variables that maximizes the number of clauses satisfied. This
problem has been studied exhaustively before [1, 2, 58], and previous work has shown that it
is already APX-hard for very small B values, including B = 4 [4].

We also note that any MAX-3SAT(B) problem has a solution where at least 7
8 ·M clauses

are satisfied, and such a solution can be found in polynomial time (by applying standard

P. A. Papp, G. Anegg and A. N. Yzelman 43

derandomization techniques to a simple randomized algorithm [28, 54]).
Finally, we point out that the constants in our construction are chosen rather large, in

order to simplify the analysis; with some further effort, it is possible to further improve upon
these constants significantly.

D.1 Construction
General tools. The dominant tool in our construction is a rigid chain gadget: a chain of
nodes u1, u2, ..., uℓ, with (ui, uj) ∈ E for all i < j, i, j ∈ [ℓ]. The gadget is a simple way to
ensure that any good schedule assigns all these nodes to a single processor. If the nodes
u1, ..., uℓ are not assigned all to the same processor in a schedule, we say that the rigid chain
is broken, and if even the nodes uℓ/2+1, ..., uℓ are not all assigned to the same processor, we
say that it is critically broken (assuming ℓ is even for simplicity). If the chain is critically
broken, i.e. both processors appear in the second half of the chain, then this means that each
node u1, ..., uℓ/2 needs to be sent to the other processor, resulting in at least ℓ

2 communication
steps altogether.

Our construction will be split into M + N + 2 gadgets, and these will be connected in
a serial fashion. That is, each gadget will have a last layer of nodes Sl (sinks within the
gadget), and a first layer of nodes S1 (sources within the gadget), and all nodes in the last
layer Sl of the i-th gadget will have an edge to all nodes in the first layer S1 of the (i + 1)-th
gadget. Intuitively, this encourages that all nodes of the current gadget are computed (and if
necessary, communicated to the other processor) before we start processing the next gadget.

Construction details. Our construction has parameters λc, λv, both constant integers, and
another integer parameter λs that is linear in M .

We begin the construction by creating two rigid chains (called the long rigid chains) of
length λs + M ·λc + N ·λv + 1 each. Furthermore, we take another rigid chain of length
M · λc (called the side chain), and artificially attach it to the middle of one of the long
rigid chains. This side chain will mimic the behavior of the segment of the long rigid chain
between the (λs + 1)-th and (λs + M ·λc)-th node. That is, the j-th node of the side chain
(with j ∈ [M ·λc]) will have an incoming edge form (i) the i-th node of the selected long rigid
chain, for all i ∈ [λs], and from (ii) the i-th node of the side chain itself, for all i ∈ [j − 1].
Similarly, j-th node of the side chain will have an outgoing edge to (i) the i-th node of the
selected long rigid chain for all i ∈ [λs + M ·λc + N ·λv + 1] \ [λs + M ·λc], and to (ii) the i-th
node of the side chain itself, for all i ∈ [λc] \ [j]. We will refer to the long rigid chain with
the side chain attached as the false chain, and the other long rigid chain as the true chain.

The first gadget of our DAG will simply consist of the first λs nodes of both long rigid
chains; we call this the initialization gadget. The last layer of this gadget consists of only 2
nodes: the λs-th nodes of both long rigid chains.

This is then followed by M distinct clause gadgets, each of which represent the next
clause of the input boolean formula. Each clause gadget consists of:

the next λc nodes of the true chain, the next λc nodes of the false chain, and the next λc

nodes of the side chain,
3 distinct rigid chains of length λc, each representing one of the literals in the clause,
2 distinct rigid chains of length λc, called padding chains,
2 extra nodes.

The first layer of the gadget consists of the first nodes of the given segments of the true,
false, and side chains, the first nodes of the 5 additional rigid chains, and the 2 extra nodes.

44 DAG Scheduling in the BSP Model

The last layer of the gadget consists of the last nodes in the given segments of the true, false,
and side chains, the last nodes of the 5 additional rigid chains, and again the 2 extra nodes.
As such, all first and last layers consist of 10 nodes in these gadgets.

The DAG then continues with N distinct variable gadgets, each representing the next
variable of the boolean formula. Each of the variable gadgets consist of:

the next λv nodes of the true chain, and the next λv nodes of the false chain,
2 distinct rigid chains of length λv, with one of them representing the variable itself, and
the other one representing the negated version of the variable,
2 extra nodes.

The first layer of these gadget consist of the first nodes of the segments of the true/false
chains, the first nodes of the 2 additional rigid chains, and the 2 extra nodes. The last layers
of the gadget consists of the last nodes in the segments of the true/false chains, the last
nodes of the 2 rigid chains, and again the 2 extra nodes. All first and last layers consist of 6
nodes in these gadgets.

Furthermore, to capture the structure of the formula, we take each rigid chain R in a
variable gadget that represents a literal (i.e. the original or negated version of a variable),
and consider all the (at most B) rigid chains Ri in the clause gadgets that represent the same
literal. For all such rigid chains, we draw an edge from all nodes of Ri to all nodes of R.

Finally, after the variable gadgets, we add a closing dummy gadget, consisting of only
the last nodes of the two long rigid chains. This is simply to ensure that we do not need to
analyze the last variable gadget differently.

As mentioned, between every pair of consecutive gadgets, we draw an edge from all nodes
in the last layer of the preceding gadget to all nodes in the first layer of the following gadget.

Altogether, our DAG consists of n = 2 · λs + (8 · λc + 2) ·M + (4 · λv + 2) ·N + 2 nodes.
With λs ∈ O(M), λc, λv ∈ O(1) and N ∈ O(M), the number of nodes is in O(M).

Choice of our parameters. We analyze the BSP scheduling of this DAG on P = 2 processors,
with a choice of g = 8 and L = 0. The constant B is already defined in the input satisfiability
problem. Note that due to P = 2, our reduction holds equivalently in all communication
models within BSP.

As for the parameters in the construction, we select λc = 3, and λv = B · λc + 1 to ensure
λv > B · λc. We discuss the choice of λs later; for now, assume that λs ∈ Θ(M).

Intuition and clean schedules. The intuition behind the construction is as follows. Any
reasonable schedule will assign all nodes in the true chain to a single processor (assume w.l.o.g.
p1), and all nodes in the false chain and its side chain to the other processor; otherwise,
either the work or the communication costs become unreasonably high. Furthermore, none
of the smaller rigid chains within the gadgets will be broken in a good solution either. Each
gadget will be computed in a single superstep in a reasonable solution, first computing all
nodes of the gadget in a computation phase, and then sending all values of the last layer of
the gadget to the other processor in a single communication phase.

In the variable gadgets, the two rigid chains will be assigned to different processors, to
avoid a too high work cost. We understand the literal assigned to p1 to represent a true
value, and the literal assigned to p2 to represent a false value. Furthermore, when R is a rigid
chain representing a literal in a variable gadget, all the rigid chains Ri representing the same
literal in a clause gadget should be assigned to the same processor, to avoid communications.
Finally, the two extra nodes should be assigned to different processors (arbitrarily).

P. A. Papp, G. Anegg and A. N. Yzelman 45

In the clause gadgets, we have 8 ·λc + 2 nodes altogether; out of these, 2 ·λc are always
assigned to p2 (false chain and side chain) and λc are always assigned to p1 (true chain).
Then, if all 3 literals in a clause are false, then we prefer to assign both of the padding chains
and both of the extra nodes to p1, but even in this case, the superstep of the gadget will
have a work cost of 5 ·λc. On the other hand, if 1, 2, or 3 of the literals in the clause are
true, then we can assign 2, 1 or 0 of the padding chains to p1, respectively (and the others to
p2), and assign the two extra nodes to different processors. This ensures that the work cost
of the superstep is the minimal possible value of 4 ·λc + 1.

If a schedule satisfies the properties above, we call it a clean schedule. Note that in these
clean schedules, the nodes Sl in the last layer of the gadgets are always balanced between the
two processors, and sent in a single communication phase, thus incurring a communication
cost of |Sl|

2 · g. As such, over the whole construction, there are Υ := 2 + 10 ·M + 6 ·N
communication steps, adding up to a communication cost of exactly Υ

2 · g.
The work cost in the initialization gadget is λs, the work cost in each variable gadget is

exactly 2 · λv + 1, and the work cost of the dummy gadget at the end is 1. However, the
work cost of a clause gadget is not fixed: if the clause is unsatisfied, the work cost is 5 ·λc,
and if it is satisfied, then the work cost is 4 ·λc + 1, i.e. it is lower by (λc − 1). Let us denote
λ′

c := (λc − 1) for convenience. Let us denote the fixed part of this total cost by

M0 := λs + (2 ·λv + 1) ·N + 5 ·λc ·M + 1 + Υ
2 ·g ;

recall that this is linear in M , i.e. there is a λ ∈ O(1) such that M0 ≤ λ ·M . This means
that if sat denotes the number of satisfied clauses in an assignment of the variables, then
the corresponding clean schedule in the DAG has a total cost of exactly M0 − λ′

c · sat. This
also shows that any clean schedule has a total cost of at most M0.

The technical part is to actually prove that any reasonable BSP schedule in this DAG is
a clean schedule outlined above. More specifically, we show that if any schedule does not
satisfy one of these properties, then we can transform it in a series of steps to obtain a clean
schedule of at most the same cost.

D.2 First observations
We begin with some simple properties on the assignment of the long rigid chains, and the
behavior of the schedule between consecutive gadgets.

The long rigid chains. We begin by showing that it is always suboptimal to not assign the
long rigid chains to a single processor.

For this, we first discuss the choice of λs. Let us briefly introduce the notation sol =
M0 − λs, i.e. the maximal cost of a clean solution, as discussed above, minus λs. Also, let
len = M ·λc + N ·λv + 1, i.e. the length of the long rigid chains, minus λs. Recall that
sol, len ∈ O(M). We will need to ensure that sol + λs < 2 · (len + λs), or in other words,
sol− 2 ·len < λs. With sol ∈ O(M) and len > 0, we can easily do this with a choice of
λs = sol. With λs ∈ O(M), we still have M0 ∈ O(M) for the fixed part of the cost of clean
solutions. Note that sol + λs < g

4 · (len + λs) also follows from the previous claim since
g = 8. We also get λs > len, since len < sol.

▶ Lemma 18. Given a schedule (π, τ, Γ) of cost C, we can convert it into a schedule (π′, τ ′, Γ′)
of cost C ′ such that C ′ ≤ C, and such that in (π′, τ ′, Γ′) the true chain is entirely assigned
to one processor, and the false chain (and its side chain) is entirely assigned to the other.

46 DAG Scheduling in the BSP Model

Proof. Recall that the two long rigid chains have length (len + λs); if either of these is
critically broken, then this results in 1

2 · (len + λs) communication steps, and thus a total
communication cost of 1

4 · (len + λs) ·g at least. Any clean schedule has a cost of at most
sol + λs, and λs was chosen to ensure g

4 · (len + λs) > sol + λs, so we could strictly reduce
the cost by switching to any clean schedule. As such, the second half of each long rigid chain
must be assigned entirely to a single processor. Note that λs > len, so this second half
contains the segments in all the clause and variable gadgets.

We next show that the long rigid chains are not broken, and that the two chains should
be assigned to different processors. Let s be the first superstep that computes a node of the
first clause gadget. First, assume that the second halves of the two chains are assigned to
different processors. In this case, the cost of the schedule before superstep s has to be at
least λs + g: the chain segments in the initialization gadget induce a work cost of at least λs,
and since the last layer of the initialization gadget is split between processors, at least one
communication step is also required. As such, we can simply reassign all nodes in the long
rigid chains to the processor owning the second half, and use a single superstep to compute
the initialization gadget and communicate the two nodes in the last layer, at a cost of exactly
λs + g. This cannot increase the cost, and ensures that the part of the schedule starting from
superstep s always remains valid.

On the other hand, assume the second halves of the two long rigid chains are assigned to
the same processor pi. Let x be the number of nodes in the first halves of the two chains
that are not assigned to pi. These nodes together incur a communication cost of at least x

2 ·g
before superstep s, since they are all sent to pi. If we instead reassign all these nodes to pi,
this increases the total work cost by at most x, while removing these communication steps;
thus it decreases the total cost if x

2 ·g > x, i.e. g > 2. At this point, both long rigid chains
are assigned entirely to pi. However, this then yields a work cost of at least 2 · (len + λs),
whereas any clean solution has a total cost of at most sol + λs.

As such, we can obtain a transformed schedule where neither of the long rigid chains is
broken, and they are assigned to different processors. Assume w.l.o.g. that the true chain is
assigned to p1, and the false chain to p2.

The side chain attached to the false chain is in the second half of the false chain, and
thus also needs to be assigned entirely to p2: if any node in the side chain is assigned to p1,
then as before, this results in 1

2 · (len + λs) communication steps from the first half of the
false chain (and a total cost of at least g

4 · (len + λs)). Thus we can also assume that the
side chain is assigned entirely to p2. ◀

Note that this assignment of the long rigid chains already results in some unavoidable
communication steps. Consider the connections between any two consecutive gadgets, with
the layers Sl and S0. The assignments of the long rigid chains implies that in each such Sl

and S0, there is at least one node assigned to p1 and at least one node assigned to p2. Hence
in any schedule, all the nodes in Sl need to be available to both processors, i.e. the always
need to be sent to the other processor. This implies that over the whole construction, there
are Υ = 2 + 10 ·M + 6 ·N unavoidable communication steps, adding up to a communication
cost of at least Υ

2 ·g (the total communication cost in a clean solution).

Subschedules on gadgets. Furthermore, we show that the computation phases in the
schedule corresponding to the gadgets can be nicely separated into disjoint segments, i.e. such
that each computation phase computes nodes from only a single gadget. Intuitively, for the
i-th gadget, there will be a superstep index s(i) (possibly after some artificial adjustments)

P. A. Papp, G. Anegg and A. N. Yzelman 47

such that all nodes of the i-th gadget are computed in superstep s(i) at the latest, and all
nodes of the (i + 1)-th gadget are computed in superstep s(i) +1 at the earliest.

Consider the i-th gadget in our construction. Let Sl be the last layer in this gadget,
and S1 be the first layer of the (i + 1)-th gadget. Let s1 be the last superstep when a node
from the i-th gadget is computed on p1, and let s2 be the last superstep when a node from
the i-th gadget is computed on p2. Note that the long rigid chains are assigned to different
processors, so these numbers are well-defined.

First assume that s1 = s2. Consider the nodes computed on processor pj in this superstep,
and take the last one of these according to some topological ordering; this has to be a node
of Sl, otherwise the node has out-neighbors in the i-th gadget on the other processor that
can only be computed after superstep s1. This means that both p1 and p2 compute at least
one node of Sl in this superstep. This means that all nodes of S1 require at least one value
from the other processor which can be sent in superstep s1 at the earliest; hence they cannot
be computed before superstep s1 + 1. Since other nodes in the (i + 1)-th gadget are all
descendants of a node in S1, we can only start computing any node from the (i + 1)-th gadget
from superstep s1 + 1. Hence we can set s(i) = s1.

Now assume s1 ̸= s2, and let w.l.o.g. s1 < s2. Consider the nodes computed on processor
p2 in superstep s2, and consider the last of these from the i-th gadget according to some
topological ordering; this has to be a node of Sl, otherwise there are nodes in the i-th gadget
that are not computed at all. As such, p2 computes at least one node of Sl in superstep
s2. Furthermore, let s′ be the first superstep where p1 computes a node from the (i + 1)-th
gadget, and let v be the first node of the (i + 1)-th gadget computed by p1 in superstep s′,
according to some topological ordering. If s′ ∈ S1, then s′ > s2, since a predecessor from
Sl computed on p2 in s2 first needs to be communicated to p1. If s′ /∈ S1, then v has an
in-neighbor v′ computed on p2 within the (i + 1)-th gadget. Since v′ is a descendant of all
nodes in Sl, and one of these nodes is computed in s2, v′ (and in general, any node of the
(i + 1)-th gadget) is computed in s2 at earliest. Since a communication is required to send v′

to p1 before computing v, we again have s′ > s2. This implies that processor p1 does not
compute anything in supersteps s1+1, ..., s2, and p2 also starts computing the nodes of the
(i + 1)-th gadget in superstep s2 at the earliest.

We consider two cases. If all nodes computed on p2 in superstep s2 are from the i-th
gadget, then we can naturally set s(i) = s2, since all nodes from the (i + 1)-th gadget are
computed after s2. Otherwise, if p2 computes nodes from both the i-th and (i + 1)-th
gadget in superstep s2, then we can artificially split up superstep s2 into two ‘imaginary’
computation phases s2,1 and s2,2, with s2,1 containing the nodes from the i-th, and s2,2
containing the nodes from the (i + 1)-th gadget. Since no computation happens on p1 in s2,
the total work cost of these computation phases is the same as the work cost of s2; as such,
in terms of work costs, we can simply analyze this superstep s2 as if it had two computation
phases. We can then set s(i) = s2,1 as before.

The discussion above shows that the sum of work costs over the new (potentially split)
computation phases is identical to the total original work cost. This essentially allows us to
analyze the work cost separately for each gadget. More specifically, it ensures the following
property: if the i-th gadget has at least Wi nodes assigned to some processor, then the entire
schedule has a total work cost of at least

∑
Wi, with the sum understood over all gadgets.

D.3 Converting to a clean schedule
We will modify the schedule in two phases, each consisting of several smaller steps. In the
first phase, we transform the original schedule into a semi-clean schedule, which fulfills

48 DAG Scheduling in the BSP Model

almost all properties of a clean schedule, but allows the two rigid chains in variable gadgets
to be assigned to the same processor. In this first phase, each of our steps will remove at
least ∆tc communication steps from Γ, and on the other hand, move at most ∆tw nodes to
another processor (thus intuitively, increasing work costs by at most ∆tw). We show in the
end that these steps do not increase the cost altogether. We point out several properties of
this technique:

It is a key aspect that the steps are analyzed together in the end, and not one by one:
when we remove some communication steps, the total cost might not decrease immediately,
since the corresponding communication phases might be dominated by the values sent in
the other direction.

Each of our steps remove elements from Γ that correspond to communicating different
nodes, so these are indeed distinct communication steps.

Nodes in the last layers of gadgets are always communicated to the other processor, so
these nodes never appear in any of our steps of removing ∆tc communications.

We also note that the internal states during these steps are only for the analysis, and might
not correspond to valid BSP schedules, but the final semi-clean schedule is valid.

Then in the second phase, we transform our semi-clean schedule into a clean schedule.
This phase does not affect communication at all. Here each of our transformation steps
create another valid BSP schedule that strictly increases the total work cost compared to
the previous schedule.

Fixing the broken chains. We begin by considering any broken rigid chain in the variable
gadgets. For any such chain, assume that the last node of the chain is assigned to processor
pj ; we then reassign all other nodes in the chain to pj , too. If there were originally x nodes
in the chain assigned to the other processor, then all of these had to be sent to pj before; as
such, the transformation removes ∆tc = x communication steps, and moves at most ∆tw = x

nodes to the other processor. Note that any nodes in the clause gadgets with an edge towards
this chain also have an edge to the last node of the chain, which was already assigned to pj ,
so the transformation does not make any new communication step necessary.

We execute the same thing with all the padding rigid chains in the clause gadgets.
We then move to the rigid chains that represent literals in the clause gadgets. Let R1 be

such a rigid chain, and let R be the rigid chain that represents the same literal in a variable
gadget. Note that R is already not broken; let pj denote the processor that R is assigned
to. If the last node of R1 is also assigned to pj , then we proceed as before, reassigning all
nodes in R1 from the other processor to pj , while removing ∆tc = x communication steps
and moving at most ∆tw = x nodes to the other processor. On the other hand, if the last
node in R1 is not assigned to pj , then we reassign every node in R1 to pj . Note that the
first (λc − 1) nodes in R1 had an edge both to a node computed on pj (last node of R) and
a to node computed on the other processor (last node of R1), so the reassignment removes
∆tc = (λc − 1) communication steps at least, and moves at most ∆tw = λc nodes.

Note that for all of our modification steps above, it holds that g
2 ·∆tc ≥ ∆tw. In particular,

when ∆tc = x and ∆tw = x, this holds since g ≥ 2. When ∆tc = λc − 1 and ∆tw = λc in
the clause gadgets, it holds since g ≥ 3 and λc ≥ 3. This implies that for the total number
∆Tc =

∑
∆tc of communication steps removed, and for the total number ∆Tw =

∑
∆tw of

nodes moved to the other processor, we have that ∆Tc ≥ 2
g ·∆Tw.

P. A. Papp, G. Anegg and A. N. Yzelman 49

To a semi-clean schedule. We now consider the gadgets one after another. For each gadget,
we place all nodes of the gadget into a single computation phase, and send all values from its
last layer in a single communication phase, creating our semi-clean solution. We analyze the
resulting work cost for each gadget. In particular,

let t
(i)
w denote the original work cost of the computation phases in the i-th gadget,

let t
(i)′

w denote the work cost in the (single) computation phase of the i-th gadget in our
resulting semi-clean schedule,
let ∆t

(i)
w denote the number of nodes that were moved to the other processor in the

previous part, and are within the i-th gadget.

Clearly
∑

∆t
(i)
w = ∆Tw over all gadgets, and note that no nodes were moved in the first and

last gadgets, since these only contain the long rigid chain segments. More importantly, if we
now have w0 nodes assigned to some processor pj in the i-th gadget, then t

(i)
w ≥ w0 −∆t

(i)
w ,

since at least w0 −∆t
(i)
w nodes must have been assigned to pj originally, incurring a work

cost of w0 −∆t
(i)
w in the computation phases of the gadget.

First consider the clause gadgets; recall that each one has 2·λc nodes assigned to p2 (false
chain and side chain), λc nodes assigned to p1 (true chain), 3 rigid chains of size λc and two
padding chains of size λc assigned to some unspecified processor, and two further nodes.

If all 3 rigid chains representing literals are assigned to p2, then there are currently at
least 5 ·λc nodes assigned to p2 in the gadget, so we had t

(i)
w ≥ 5 ·λc −∆t

(i)
w . In this case,

we reassign the two padding chains and the two extra nodes all to p1, if they were not
assigned to p1 before. The resulting computation phase has a cost of exactly t

(i)′

w = 5 ·λc.
Thus this ensures t

(i)
w ≥ t

(i)′

w −∆t
(i)
w .

If x ≥ 1 of the rigid chains for literals are assigned to p1, then we reassign (x− 1) of the
padding chains to p2, and the remaining 2− (x− 1) to p1, and reassign the two extra
nodes to separate processors. With 4 rigid chains (or chain segments) and an extra node
on both p1 and p2, the resulting computation phase has t

(i)′

w = 4 ·λc + 1. Note that with
8·λc +2 nodes in the gadget, this is the minimal work cost for its computation phases, and
hence t

(i)
w ≥ t

(i)′

w ; however, for simplicity, we again use the weaker form t
(i)
w ≥ t

(i)′

w −∆t
(i)
w .

In both cases, our transformation also ensures that the 10 nodes of the last layer are split
equally among the processors, so we can communicate all values in a single communication
phase at a cost of 5 ·g in the end.

Now consider the variable gadgets: each one has λv nodes assigned to p2 (false chain),
λv nodes assigned to p1 (true chain), 2 rigid chains of size λv assigned to some unspecified
processor, and two further nodes.

If the 2 rigid chains are assigned to the same processor pj , then there are currently at least
3 ·λv nodes assigned to pj in the gadget, so we had t

(i)
w ≥ 3 ·λv −∆t

(i)
w . In this case, we

reassign the two extra nodes to the other processor than pj . The resulting computation
phase has a cost of exactly t

(i)′

w = 3 ·λv, ensuring t
(i)
w ≥ t

(i)′

w −∆t
(i)
w .

If the 2 rigid chains are assigned to different processors, then we reassign the two extra
nodes to separate processors. The resulting computation phase has t

(i)′

w = 2·λv + 1. With
4 ·λc + 2 nodes in the gadget, this is the minimal cost for its computation phases, so
t
(i)
w ≥ t

(i)′

w . For simplicity, we again only use t
(i)
w ≥ t

(i)′

w −∆t
(i)
w .

Again in both cases, the 6 nodes of the last layer are split equally among the processors in
our schedule, so we can have a single communication phase of cost 3 ·g in the end.

50 DAG Scheduling in the BSP Model

Note that after we processed all gadgets, we arrive at a valid and semi-clean schedule,
where the only difference from a clean schedule is that the two rigid chains in variable gadgets
might be assigned to the same processor. Furthermore, if the original schedule had a total
work cost of Tw =

∑
t
(i)
w , and the resulting schedule has a total work cost of T ′

w =
∑

t
(i)′

w

(with the sum understood over all gadgets), then our observations in each gadget ensure that
we have Tw ≥ T ′

w −∆Tw altogether. Moreover, since the resulting schedule is semi-clean,
and has a communication cost of Υ

2 ·g exactly, its total cost is T ′
w + Υ

2 ·g. In contrast to this,
the original schedule had at least Υ communication steps for the nodes in the last layers of
the gadgets, and the ∆Tc communication steps removed, adding up to a communication cost
of at least 1

2 ·g · (Υ + ∆Tc). Using ∆Tc ≥ 2
g ·∆Tw, the cost of the old schedule was at least

Tw + 1
2 ·g · (Υ + ∆Tc) ≥ Tw + ∆Tw + Υ

2 ·g ≥ T ′
w + Υ

2 ·g .

Thus our semi-clean schedule indeed has at most as high cost as the original schedule.

To a clean schedule. From the BSP schedule above, it only remains to ensure that in each
variable gadget, the rigid chains are assigned to different processors. As such, consider any
variable gadget where this does not hold, and both rigid chains are assigned to pj . We then
arbitrarily select one of the rigid chains R, and assign it to the other processor; at the same
time, we pick one of the extra nodes in the gadget, and reassign it from the other processor
to pj . Before this step, the total work cost in the single supersteps of the variable gadget
was 3 ·λv; after the transformation, the work cost is only 2 ·λv + 1. This means that the
work cost in the gadget is reduced by (λv − 1). Note that the reassignment of the extra node
ensures that the last layer of the gadget still has 3 nodes on both processors, so the cost 3 ·g
of the communication phase at the end remains unchanged.

Simultaneously to each such transformation, we consider all rigid chains Ri in the clause
gadgets that are connected to R, and also reassign all such Ri to the other processor. Besides
this, we also modify the padding chains/extra nodes in the clause gadget of Ri to ensure that
it corresponds to a clean schedule, and to maintain the previous work cost. More specifically,
consider the 3 rigid chains representing literals in the clause gadget of Ri.
1. If all 3 of the rigid chains were assigned to p1, then both padding chains were assigned to

p2, and the extra nodes to different processors. In this case, besides reassigning Ri to p2,
we reassign one of the padding chains to p1.

2. If 2 of the rigid chains were assigned to p1, then the two padding chains were assigned to
different processors, as well as the two extra nodes.
a. If we are reassigning Ri to p1, we also reassign a padding chain from p1 to p2.
b. If we are reassigning Ri to p2, we also reassign a padding chain from p2 to p1.

3. If 1 of the rigid chains was assigned to p1, then both padding chains were assigned to p1,
and the extra nodes to different processors.
a. If we are reassigning Ri to p1, we also reassign a padding chain from p1 to p2.
b. If we are reassigning Ri to p2, we also reassign an extra node from p2 to p1.

4. If none of the rigid chains were assigned to p1, then the two padding chains were assigned
to p1, as well as the two extra nodes. In this case, besides reassigning Ri to p1, we
reassign an extra node to p2.

Cases (1), (2a), (2b) and (3a) leave the work cost in the clause gadget unchanged. Case (4)
actually reduces the work cost in the clause gadget by (λc − 1). However, case (3b) might
actually increase the work cost in the gadget by (λc − 1). Note that all cases ensure that we

P. A. Papp, G. Anegg and A. N. Yzelman 51

still have 5 nodes on both processors in the last layer Sl afterwards, and hence the cost of
the communication phase remains 5 ·g.

Altogether, reassigning a rigid chain R in a variable gadget decreases the work cost in the
variable gadget by (λv − 1), and in the clause gadgets, it increases the work cost by at most
B · (λc − 1) altogether, since any variable appears in at most B clauses. We have ensured
λv > B ·λc, hence (λv − 1) > B ·(λc − 1); this implies that the reassignment of every chain R

in the variable gadget decreases the total cost of the schedule. As such, we can execute these
one after another, making sure that the two rigid chains are assigned to different processors
in all variable gadgets. Our adjustments in the corresponding clause gadgets make sure that
at the end of this process, we obtain a clean schedule that describes a valid solution of 3SAT.
The cost of this clean schedule is at most as much as that of the original schedule.

D.4 Reduction
The conversion in the previous sections implies two things: (i) we can assume that the
optimal schedule is a clean schedule, (ii) we can assume that any approximation algorithm
also returns a clean schedule, since otherwise, we can simply further reduce its cost and
obtain a clean schedule (thus considering an improved version of the same algorithm).

This construction and conversion provides a natural L-reduction between the two problems.
The optimum value in the original MAX-3SAT(B) problem is at least 7

8 ·M , while the optimum
cost in the derived BSP scheduling problem is at most M0 ≤ λ ·M , so the two optima are
indeed within a constant factor of 7

8 · λ. Furthermore, if satopt denotes the number of
satisfied clauses in the optimal MAX-3SAT(B) solution, then the transformation shows that
the optimal cost of BSP scheduling our DAG is Copt = (M0 − λ′

c · satopt). Assume that an
algorithm returns a BSP schedule of cost Csol. As shown before, we can transform this into
a clean schedule without increasing its cost, and this clean schedule corresponds to a valid
solution of MAX-3SAT(B): if this variable assignment satisfies satsol clauses, then the cost
of the clean BSP schedule is exactly (M0 − λ′

c · satsol) ≤ Csol. As such, altogether we have

Csol − Copt ≥ (M0 − λ′
c ·satsol)− (M0 − λ′

c ·satopt) = λ′
c · (satopt− satsol) .

This completes the L-reduction. Since MAX-3SAT(B) is known to be APX-hard, this implies
that BSP scheduling is also APX-hard, and hence does not allow a PTAS. We note that since
P∈O(1), and assigning all nodes to the same processor and superstep is a P -approximation,
the problem is also within APX, and hence it is APX-complete.

E Communication scheduling

We now present our proofs on the hardness of the communication scheduling problem.
As a side note, we point out that a slightly similar problem to CS also is studied in the

work of [10], introduced as an intermediate scheduling task (named UMPS) in their reduction.
However, in UMPS, only the assignment π fixed, the assignment to time steps is not;
furthermore, UMPS is studied in an entirely different setting to ours, with no communication
costs at all and non-constant P .

E.1 CS with 2 processors
We begin by showing that with P = 2 processors, there is a relatively simple algorithm to
find the optimal communication schedule in polynomial time.

52 DAG Scheduling in the BSP Model

Proof of Lemma 12. Consider the following greedy algorithm: we iterate through the
supersteps 1, ..., S in order. In the current superstep s, let Λ1,2 denote the set of values u

that satisfy the following properties: (i) they were already computed on p1 before (π(u) = p1,
τ(u) ≤ s), (ii) they are required later on p2 (there is (u, v) ∈ E with π(v) = p2 and τ(v) > s),
and (iii) they have not been sent from p1 to p2 so far in our algorithm. Furthermore, assume
that this set is organized as a list of values, sorted in increasing order according to the first
time they are needed on p2. That is, if for two values u1, u2 ∈ Λ1,2 it is the successors v1, v2
on p2 that have a minimal τ(v1) and τ(v2), respectively, with τ(v1) < τ(v2), then u1 will
appear earlier in the list Λ1,2 than u2. Finally, let Λ′

1,2 ⊆ Λ1,2 denote the subset of this list
that is immediately needed in superstep (s + 1), i.e. there is a (u, v) ∈ E with π(v) = p2 and
τ(v) = s + 1; note that these values appear at the beginning of Λ1,2. Symmetrically, let Λ2,1
and Λ′

2,1 denote the same values in the other direction.
Let us assume w.l.o.g. that |Λ′

1,2| ≥ |Λ′
2,1|. Our greedy algorithm will send exactly

Ccomm
(s) = |Λ′

1,2| values from p1 to p2 in superstep s: the values contained in Λ′
1,2. In the

other direction, from p2 to p1, we will send the first Ccomm
(s) of values of Λ2,1 according to

its ordering (but of course at most |Λ2,1| values if |Λ2,1| < Ccomm
(s)). Note that this indeed

results in a communication cost of Ccomm
(s) for the superstep, and all the values required in

the computation phase of superstep (s + 1) are indeed transmitted.
The algorithm clearly runs in polynomial time. The number of supersteps is at most n,

and in each superstep, we can update the lists Λ1,2 and Λ2,1 in at most O(n) time.
It remains to show that this algorithm indeed finds the optimal communication schedule.

In any concrete superstep s, consider the values communicated by the greedy method above;
we show that there is at least one optimal solution that executes these communication steps
in superstep s. The optimality of our algorithm then follows from an induction in s.

Given a concrete superstep s, let Γ denote the best solution that sends the same values
in superstep s as our greedy algorithm, and assume for contradiction that there is an
alternative solution Γ′

1 that results in a lower total cost. Firstly, let us define ∆ = Ccomm
(s)−

max(|Λ′
1,2|, |Λ′

2,1|) in Γ′
1. If ∆ is positive, then let us take ∆ arbitrary values from both

Λ1,2 \ Λ′
1,2 and Λ2,1 \ Λ′

2,1, and instead of communicating them in superstep s, let us assign
the same communication steps to superstep (s + 1). Note that by the definition of Λ′, none
of these values are required in superstep (s + 1), so we can indeed do this. Furthermore, this
modified solution Γ′

2 reduces Ccomm
(s) by exactly ∆, and only increases Ccomm

(s+1) by ∆ at
most, so the total cost does not increase either.

Furthermore, it is clear that the values Λ′
1,2 and Λ′

2,1 need to be transmitted in superstep
s. Let v1, ..., vk denote the further values that are sent by our algorithm from p2 to p1 in
superstep s; recall that these are the first k = |Λ′

1,2| − |Λ′
2,1| values in Λ2,1 \ Λ′

2,1. Assume
that Γ′

2 transfers the values v̂1, ..., v̂k′ from p2 to p1 in superstep s instead; assume that
these are ordered according to the same rule as in our Λ lists. Note that k′ ≤ k, since Γ′

2
has Ccomm

(s) = max(|Λ′
1,2|, |Λ′

2,1|). Now let us further modify Γ′
2 into Γ′

3 as follows: for all
i ∈ [k′], we take the communication steps in Γ′

2 where vi and v̂i are sent from p2 to p1, and
we exchange these two steps for every such i.

The resulting Γ′
3 is still a valid communication schedule. On the one hand, sending vi

instead of v̂i in superstep s is naturally a valid step, as also demonstrated by solution Γ.
On the other hand, both the vi and the v̂i values are ordered according to the time they
are required on p1, so v̂i is always required at a later (or the same) superstep as vi; this
means that sending v̂i in the step where originally vi was sent is also a valid step. Moreover,
Γ′

3 has the same communication cost as Γ′
2, since the number of values communicated in

each superstep remains unchanged. Finally, if Γ′
3 happens to have k′ < k, we can also move

P. A. Papp, G. Anegg and A. N. Yzelman 53

the communication steps sending the (k′ + 1)-th, ..., k-th node of Λ2,1 (from p2 to p1) to
superstep s, without increasing Ccomm

(s).
This ensures that Γ′

3 now indeed transfer the same values in superstep s as Γ. However,
Γ′

3 was obtained from Γ′ without increasing the total cost; this contradicts the optimality of
Γ. ◀

E.2 NP-hardness in DB, FS and FB
Next we show that in general, the CS problem is NP-hard if communication happens according
to the DB, FS or FB models.

Proof of Theorem 13. In these models, NP-hardness can be shown through a reduction
from a special case of the 3D-matching problem. In this problem, we are given three
classes of nodes X,Y ,Z of the same size N = |X| = |Y | = |Z|, and a set H of M triplets
(x, y, z) ∈ X × Y × Z, and the question is whether we can find N triplets in H that form an
exact cover, i.e. they are disjoint (and hence they cover X, Y and Z entirely). This problem
is known to be NP-complete [18].

Given a 3D-matching problem, we convert it into a CS problem on P = 7 or P = 8
processors, depending on the model. Three of the processors, named pX , pY and pZ , will
correspond to the classes X,Y ,Z and another three processors p

X̃
, p

Ỹ
and p

Z̃
will represent

them in reverse ordering (to be discussed later). We will also have a source processor p0
which needs to send values to all these six processors, without making the communication
cost too large. In the FS model, we also have an auxiliary processor pa, and instead of
sending the values directly, p0 will need to send them to pa first, and pa will need to relay
them to the remaining processors.

As a general tool in our construction, for any superstep s, we can add a node v that is
assigned to some processor p1 in superstep s, and draw an edge from this to another node
that is assigned to some other processor p2 in superstep (s + 1). This node can only be
communicated form p1 to p2 in superstep s; as such, it does not have any degree of freedom
in our CS problem, and indeed can be understood as a fixed cost that contributes 1 to both
Csent

(s,p1) and Crec
(s,p2). By adding a set of these immediately needed values between any

pair of processors, we can essentially ensure that we have a desired fixed value for Csent
(s,p)

and Crec
(s,p) for any specific p or s, adding up to a fixed unavoidable communication cost over

the whole schedule. The main idea of our construction is to convert the input 3D-matching
to a CS problem where the maximal allowed cost is set to this fixed communication cost.
Hence intuitively speaking, the solvability of our CS problem will depend on whether the
remaining (not fixed) communication steps in our construction can be scheduled in such a
way that the communication cost is not increased above this fixed cost in any superstep; in
other words, for the communication steps that can be scheduled flexibly, we need to find
appropriate supersteps where the Csent

(s,p) and Crec
(s,p) values of the sending and receiving

processors are not yet “saturated”, i.e. they can both be increased without increasing the
total cost Ccomm

(s) in the superstep.
The DAG schedule in our CS construction will be split into two parts: an initialization

part and a matching part, consisting of S1 and S2 supersteps, respectively. Let us denote
the nodes of X, Y and Z by xi, yi and zi, respectively, for i ∈ [N]. For each specific triple
(xi, yj , zk) ∈ H, a construction will have a distinct node ui,j,k that is assigned to processor
p0 and superstep 1 that represents this specific triple. We then draw an edge from this node
ui,j,k to an arbitrary node in the following processors/supersteps:

processors pX , pY and pZ in superstep S1 + 6 · i + 1,

54 DAG Scheduling in the BSP Model

processors p
X̃

, p
Ỹ

and p
Z̃

in superstep S1 + 6 · (N + 1− i) + 1,

setting S2 = 6 ·N .
Intuitively, the initialization part will allow us to transfer M −N (but not more!) of the

values ui,j,k to all the six other processors where they are required, already until superstep
S1, without increasing the communication cost in any of the supersteps 1, ..., S1. The specific
details of how this is done depends on the concrete model. This will mean that in the matching
part, we need to transfer the remaining N values ui,j,k to the six other processors without
increasing the communication costs in steps S1 + 1, ..., S2. Our construction will ensure
that this is possible if and only if the N triplets corresponding to these N remaining nodes
ui,j,k form an exact cover of X,Y ,Z. As such, our construction will allow a communication
schedule with the fixed immediate costs if and only if the original 3D-matching problem is
solvable.

The construction details for the matching part are identical in all of the models. In each
superstep s ∈ {S1 + 1, ..., S2}, we ensure that Csent

(s,p) = 1 and Crec
(s,p) = 1 for all of the

processors, with two exceptions: firstly, we have Csent
(s,p0) = 0 for p0, and secondly, we have

Crec
(s,p′) = 0 for another processor p′ that depends on the remainder of s when divided by 6;

in particular, we set

Crec
(s,pX) = 0 if s− S1 gives 1 modulo 6,

Crec
(s,pY) = 0 if s− S1 gives 2 modulo 6,

Crec
(s,pZ) = 0 if s− S1 gives 3 modulo 6,

Crec
(s,p

X̃
) = 0 if s− S1 gives 4 modulo 6,

Crec
(s,p

Ỹ
) = 0 if s− S1 gives 5 modulo 6,

Crec
(s,p

Z̃
) = 0 if s− S1 gives 0 modulo 6.

This can indeed be easily implemented with fixed communication steps in any superstep s: we
simply add an “imaginary” edge from p0 to the desired target node p′, we arbitrarily extend
this to a perfect matching (i.e. each processor sends a single fixed value to another processor),
and then discard this imaginary edge. This results in a set of fixed communications where
in terms of costs, we indeed have Csent

(s,p) = 1 and Crec
(s,p) = 1 for all of the processors,

with the exception of Csent
(s,p0) = 0 and Crec

(s,p′) = 0. As such, in any of the models,
there is only one possible communication step in superstep s that does not increase the
communication cost: sending a single value from p0 to p′.

Now assume that at the end of the initialization part, there are (M−N) of the values ui,j,k

that are already available on all processors, and the remaining N values are still available on
p0 only.

▶ Lemma 19. The remaining N values ui,j,k can be communicated without increasing the
communication costs if and only if the corresponding N triplets form an exact cover.

Proof. This is not hard to see: our construction allows us to send exactly one value from p0
to all other processors in the first 6 steps, one in the second 6 steps, and so on. As such,
if we have an exact cover, then this contains all of x1, y1 and z1 exactly once, and hence
there is a single value among the ui,j,k that is needed on pX in superstep S1 + 7, a single
value that is needed on pY in superstep S1 + 7, and a single value that is needed on pZ in
superstep S1 + 7; we can transfer these from p0 in supersteps S1 + 1, S1 + 2 and S1 + 3,
respectively. Similarly, the exact cover contains all of xN , yN and zN exactly once, so for
p

X̃
, p

Ỹ
and p

Z̃
, there is a single value that is needed on these processors in superstep S1 + 7;

we can transfer these from p0 in supersteps S1 + 4, S1 + 5 and S1 + 6.

P. A. Papp, G. Anegg and A. N. Yzelman 55

The same technique can be continued for the rest of the values: all of x2, y2, z2 and
x(N−1), y(N−1), z(N−1) are contained in the cover exactly once, so apart from the values
already sent, there is exactly one more value that is required on all six receiving processors by
superstep S1 + 13. These values can be transferred in steps S1 + 7, ..., S1 + 12. Following this
pattern, we can communicate all the values by the time they are required, without increasing
the communication cost in any of the supersteps.

For the reverse direction, assume that the values can be communicated without increasing
the cost; this implies two things about the original triplets. Firstly, due to processor pX ,
we know that our triplets contain x1 at most once, the nodes in {x1, x2} at most twice,
the nodes in {x1, x2, x3} at most three times, and so on. The same holds for the nodes yi

and zi. Furthermore, due to processor p
X̃

, our triplets contain xN at most once, the nodes
{xN , x(N−1)} at most twice, the nodes {xN , x(N−1), x(N−2)} at most three times, and so on
(similarly for yi and zi).

One can observe that in order for N triplets to satisfy these conditions, they indeed
need to form an exact cover. In particular, if the triplets are not an exact cover, then there
must a lowest-indexed node xi (w.l.o.g. we assumed it is in class X) which is not contained
in the triplets exactly once (i.e. it either does not appear at all, or it appears more than
once). If xi appears more than once, then the nodes {x1, ..., xi} appear altogether more
than i times, which is a contradiction. On the other hand, if xi does not appear at all,
then the nodes {x(i+1), ..., xN} appear altogether more than (N − i) times, which is again a
contradiction. ◀

It remains to discuss the initialization part; we first discuss it for the broadcast models
DB and FB. In these models, the initialization will consist of S1 = M − N supersteps,
and each will allow us to transfer a single value from p0 to all the remaining 6 processors.
For this, we simply need to add a single fixed value that has to be sent from e.g. pX to p0
in each superstep s ∈ [S1]; this sets the communication cost to Ccomm

(s) = 1, and ensures
that p0 can only send exactly one value in each of these supersteps without increasing the
cost. Since the remaining six processors all have Crec

(s,p) = 0 so far, they can all receive this
broadcasted value without increasing the cost. As such, by the end of the initialization, p0
can only send (M −N) of the values, and these can be received by all other processors. Note
that while it would also be possible to communicate between the remaining six processors
without a cost increase, this does not offer any advantage, since the only values that have
left processor p0 up to a given superstep s are already known by all the six processors by
superstep s.

In the FS model, we ensure the same behavior using an auxiliary processor pa and
altogether S1 = 7 · (M −N) supersteps. Similarly to the matching part, we ensure in each
of these S1 supersteps that Ccomm

(s) = 1, and there is only a single processor that can
send a value and a single processor that can receive a value without increasing the cost. In
particular, in the first (M −N) supersteps, we ensure that Csent

(s,p) = 1 and Crec
(s,p) = 1

for all p ∈ [P], with two exceptions: we have Csent
(s,p0) = 0 and Crec

(s,pa) = 0. This ensures
that the only allowed communication step in the first (M −N) supersteps is to send a single
value from p0 to pa. Then for the next 6 · (M −N) supersteps, we again set Csent

(s,p) = 1
and Crec

(s,p) = 1 for all p ∈ [P], with two exceptions: we set Csent
(s,pa) = 0 for pa, and we

set Crec
(s,p′) = 0 for another processor p′ in a periodic fashion again:

Crec
(s,pX) = 0 if s− (M −N) gives 1 modulo 6,

Crec
(s,pY) = 0 if s− (M −N) gives 2 modulo 6,

Crec
(s,pZ) = 0 if s− (M −N) gives 3 modulo 6,

56 DAG Scheduling in the BSP Model

Crec
(s,p

X̃
) = 0 if s− (M −N) gives 4 modulo 6,

Crec
(s,p

Ỹ
) = 0 if s− (M −N) gives 5 modulo 6,

Crec
(s,p

Z̃
) = 0 if s− (M −N) gives 0 modulo 6.

This ensures that for all other six processors p′, there are exactly (M −N) rounds where the
only allowed operation is to send a single value from pa to p′.

This implies that in the initialization part, p0 will never be able to send a value to any of
the six processors without increasing cost; instead, it has to send the values through pa. In
the first (M −N) rounds, p0 can communicate any chosen (M −N) values to pa, but not
more; then pa can relay these to the remaining six processors in the next 6 · (M −N) rounds
without increasing cost.

We note that the reason why the same proof strategy does not work for the DS model is
in this initialization part: the step of p0 sending a value to e.g. pX and pY are independent
in the DS model, and hence there is no straightforward way to ensure that p0 indeed has to
send (M −N) complete triplets to the remaining processors, and has no option to “break
them up” and only send the desired parts of each triplet.

Altogether, this completes the reduction: our construction shows that in the resulting CS
problem, there only exists a communication schedule with the predefined cost (M + 5 ·N in
the DB and FB models, or 7 ·M −N in the FS model) if the original 3D-matching problem
is solvable, i.e. if there are N triplets that form an exact cover. ◀

E.3 With communication weights
On the other hand, with communication weights, it is more straightforward to show that the
problem is already NP-hard for P =2.

Proof of Lemma 14. Consider the 3-partition problem with numbers a1, ..., a3·m′ . We build
a DAG that is split into (m′ + 1) supersteps. Let us place a node into all (m′ + 1) supersteps
on both p1 and p2 so that they are non-empty; we will refer to this node on processor p in
superstep s as vp,s. To make the choice of π and τ more reasonable, we can also draw an
edge form vpi,s to vpi,(s+1) for all i ∈ {1, 2}, s ∈ [m′].

Then for all s ∈ [m′], we draw an edge from vp1,s to vp2,(s+1), and choose a communication
weight of wcomm(vp1,s) = T . Since the value of vp1,s can only be communicated from p1 to
p2 in superstep s, this will ensure that Csent

(s,p1) = T for all s ∈ [m′].
On the other hand, we add m distinct nodes u1, ..., um to processor p2 and superstep 1,

we draw an edge from each of them to vp1,(m′+1), and we set the communication weights
of these nodes to wcomm(ui) = ai. This implies that these nodes can be freely transferred
in any of the supersteps 1, ..., m′ from p2 to p1. However, in order to not increase the cost
Ccomm

(s) above T for any s ∈ [m′], we must ensure that we communicate a set of values
in each superstep that have total weight at most T . Since the total weight of the nodes is
m′ · T , this means that we have to transfer a total weight of exactly T from p2 to p1 in each
superstep.

As such, a schedule with communication cost m′ · T exist if and only if the original
3-partition problem was solvable, which completes the reduction. ◀

E.4 Comments on latency
So far, we have considered the CS problem without latency; indeed since the number of
supersteps is already decided in this setting, any communication schedule induces the same
latency cost in total, so this does not influence the relative quality of the different solutions.

P. A. Papp, G. Anegg and A. N. Yzelman 57

Alternatively, we might be interested in a variant of the CS problem where if there are
no communications happening in supersteps s, then this latency cost is not added to the
total (and hence we essentially have the option to merge supersteps s and (s + 1) by an
appropriate communication schedule, and save this latency cost). We note that the hardness
results above also carry over to this setting with latency. In particular, the constructions in
Sections E.3 and E.2 ensure that there is a fixed communication happening in each superstep,
so the total latency is equal in all solutions anyway. On the other hand, the greedy approach
in Section E.1 can easily become suboptimal if L > 0, so Lemma 12 is more challenging to
extend to this case.

F ILP representation

F.1 ILP formulation details
The main idea of the ILP representation has already been outlined in Section 9. The binary
variables compv,p,s allow us to indicate whether v was computed on processor p in the
computation phase of superstep s. For each v ∈ V , we add a linear constraint∑

p∈[P]
s∈[S]

compv,p,s = 1

to ensure that each node is indeed assigned to exactly one processor and superstep. This
constraint can be relaxed to an inequality (the sum needs to be ≥ 1) to address the case
when duplication is also allowed. Note that this also allows a node to be computed multiple
times on the same processor, but this will never happen in an optimal solution. Alternatively,
if we wish to specifically exclude this case, we can add further constraints for each fixed p to
ensure that the sum over all s ∈ [S] is at most 1.

On the other hand, the binary variables presv,p,s indicate whether processor p is already
aware of the value of v at the end of the computation phase of superstep s. As mentioned
before, in case of e.g. the broadcast models, the correctness of these variables can be ensured
with the condition

presv,p,s ≤ presv,p,(s−1) + compv,p,s + recv,p,(s−1)

for each (v, p, s) ∈ V × [P]× [S]. These constraints ensure that if presv,p,s = 1, then at least
one of presv,p,(s−1), compv,p,s and recv,p,(s−1) must also be 1, i.e. the variable was already
present on p before, or it was computed in the computation phase of superstep s, or received
in the communication phase of superstep (s− 1). For the special case of s = 1, we need to
simplify the condition to presv,p,s ≤ compv,p,s.

A similar constraint on the presence variables can also be applied in the DS model with
the variables commv,p1,p2,s; in particular, we need to change the constraint to

presv,p,s ≤ presv,p,(s−1) + compv,p,s +
∑

p′∈[P]
p′ ̸=p

commv,p′,p,(s−1) .

These variables already provide a straightforward way to encode the precedence constraints:
a node v can only be computed on p in superstep s if all of its predecessors are also available
on p by the end of the computation phase of superstep s. To express this, we can add a
constraint compv,p,s ≤ presu,p,s for all (u, v) ∈ E and all p ∈ [P], s ∈ [S]; with our binary
variables, this ensures that if we have compv,p,s = 1, then we must also have presu,p,s = 1.

58 DAG Scheduling in the BSP Model

If we introduce separate integer variables for all Cwork
(s,p) and Cwork

(s), then the work
costs are also easy to compute from the variables compv,p,s. We can simply write

Cwork
(s,p) =

∑
v∈V

compv,p,s

to obtain the work cost on a specific superstep, and then add a constraint Cwork
(s) ≥ Cwork

(s,p)

for all p ∈ [P], s ∈ S. This ensures that Cwork
(s) will indeed be larger than the work cost on

each specific processor in s, and in the optimal solution, it will take the value of exactly the
maximum. Note that this expression of work costs is straightforward to extend with work
weights as coefficients in these linear constraints:

Cwork
(s,p) =

∑
v∈V

wwork(v) · compv,p,s .

Finally, the analysis of communication costs and constraints depends on the concrete
communication model. As discussed, we use the binary variables sentv,p,s and recv,p,s to
capture communication in the DB and FB models, and the binary variables commv,p1,p2,s to
capture communication in the FS model (the DS model will be discussed separately later).
The correctness of the communication steps (i.e. that processors only send values that they
already possess) can be ensured by the constraints sentv,p,s ≤ presv,p,s for all v ∈ V , p ∈ [P],
s ∈ [S] in the broadcast models. The same thing can be ensured by commv,p,p′,s ≤ presv,p,s

in FS, for all v ∈ V , p, p′ ∈ [P], s ∈ [S]. Furthermore, in the broadcast models, we must
ensure that if recv,p,s = 1, then we have sendv,p′,s = 1 for some other p′, i.e. some processor
is actually broadcasting the value v; this can be done by adding the constraint

recv,p,s ≤
∑

p′∈[P]
p′ ̸=p

sentv,p′,s

for each (v, p, s) ∈ V × [P]× [S].
Another thing to ensure in the direct transfer models (DS and DB) is that a value is

indeed sent by the processor that computed it. One simple way to express this is to introduce
an auxiliary binary variable homev,p for all v ∈ V , p ∈ [P] to indicate whether v was
computed on p; for this, we can simply add the constraint∑

s∈[S]

compv,p,s = homev,p

for all v ∈ V , p ∈ [P]. Then besides requiring sentv,p,s ≤ presv,p,s in the DB model, we
can also add the constraint sentv,p,s ≤ homev,p (for all v ∈ V , p ∈ [P], s ∈ [S]).

The communication costs Csent
(s,p), Crec

(s,p), Ccomm
(s,p) and Ccomm

(s) can again be
expressed with separate variables and some simple constraints. The relations between
these variables are naturally ensured with Ccomm

(s,p) ≥ Csent
(s,p), Ccomm

(s,p) ≥ Crec
(s,p)

and Ccomm
(s) ≥ Ccomm

(s,p) for all p ∈ [P], s ∈ [S]. In fact, the Ccomm
(s,p) variables are

not even needed as an intermediate step, we can simply write Ccomm
(s) ≥ Csent

(s,p) and
Ccomm

(s) ≥ Crec
(s,p). Similarly to the case of work costs, the constraints formally only ensure

that Ccomm
(s) is higher than these values, but in the optimal solution it is always set exactly

to their maximum.
In the broadcast models, we further need to add

Csent
(s,p) =

∑
v∈V

sentv,p,s and Crec
(s,p) =

∑
v∈V

recv,p,s

P. A. Papp, G. Anegg and A. N. Yzelman 59

for all p ∈ [P], s ∈ [S]. In the FS model, we need to add

Csent
(s,p) =

∑
v∈V

p′∈[P]
p′ ̸=p

commv,p,p′,s

and
Crec

(s,p) =
∑
v∈V

p′∈[P]
p′ ̸=p

commv,p′,p,s

for all p ∈ [P], s ∈ [S]. Once again, these constraints can be easily extended with node-based
communication weights (or even edge-based ones in FS) by adding them as simple coefficients:
for instance, the constraint on Csent

(s,p) in the broadcast models becomes

Csent
(s,p) =

∑
v∈V

wcomm(v) · sentv,p,s .

.
With the cost variables implemented, the objective function of the linear program can be

naturally expressed as the actual BSP objective function. In the simpler case of no latency
(L = 0), the objective is simply to minimize∑

s∈[S]

Cwork
(s) + g · Ccomm

(s) .

The optimal ILP solution to this problem naturally provides the optimal BSP schedule.
Extending this formulation with latency requires an extra technical step: we introduce

a binary variable useds for each superstep s ∈ [S] to indicate if there is indeed some
communication happening in the communication phase of superstep s. We can set this
variable to the correct value by adding the constraints

useds ≥ sentv,p,s

in the broadcast models for all (v, p, s) ∈ V × [P]× [S], or by adding

useds ≥ commv,p,p′,s

for all v ∈ V , p, p′ ∈ [P], p ̸= p′, s ∈ [S] in the FS model. This then allows us to modify the
ILP objective to minimizing∑

s∈[S]

Cwork
(s) + g · Ccomm

(s) + L · useds .

Note that this extra technical step in case of latency is essentially required because the
optimal number of supersteps is not known in advance; as such, the straightforward way to
ensure that we are not excluding the optimal solution is to select S = n, and run the ILP
solver on the formulation obtained from this choice. If a solution in fact uses S < n supersteps,
then the natural way to represent this is to number these supersteps consecutively from 1
to S. However, there is no straightforward way to encode this in the ILP representation,
and hence solutions with S < n supersteps can be represented in multiple different ways in
our ILP, possibly leaving an arbitrary subset of the supersteps {1, ..., n} empty, or having
consecutive supersteps where no communication happens at all (and hence they could be
merged into a single superstep in the natural solution). The useds variables ensure that in

60 DAG Scheduling in the BSP Model

case of latency, we charge no extra cost for these unnatural representations. We point out
that in practice, an ILP-solver based approach might benefit from more sophisticated search
strategies to find the optimal S value.

Finally, let us discuss communication in the DS model separately. As mentioned before,
a naive implementation could again use the variables commv,p1,p2,s as in FS, and add extra
constraints commv,p,p′,s ≤ homev,p similarly to DB; however, this increases the number of
variables to O(n ·P 2 ·S) in this model, too. Instead, consider the following more sophisticated
approach. Since the DS model only allows direct transfer, the variables recv,p,s in fact
already determine the communications happening in superstep s, since each variable can only
be sent from a single processor. As such, we can again apply the binary variables recv,p,s,
and besides these, we also introduce a positive integer variable senttimesv,p,s, which counts
the number of times v is sent by processor p in the communication phase of superstep s.
Firstly, we can add the constraints

senttimesv,p,s ≤ p · homev,p

for all (v, p, s) ∈ V × [P]× [S] to ensure that senttimesv,p,s = 0 if v is not computed on p,
and at most p otherwise. More importantly, we add the constraints

senttimesv,p,s + p · (1− homev,p) ≥
∑

p′∈[P]
p′ ̸=p

recv,p′,s

for all (v, p, s) ∈ V × [P] × [S]. If homev,p = 0, then this constraint has no effect: since
p · (1− homev,p) = p, it is satisfied for any choice of senttimesv,p,s and recv,p′,s. However,
if homev,p = 1, then the constraint ensures that senttimesv,p,s must be at least as large as
the number of processors receiving v in superstep s (and there is no motivation to increase it
any larger). Given these variables, we can use the alternative definition

Csent
(s,p) =

∑
v∈V

senttimesv,p,s

for all p ∈ [P], s ∈ [S] to obtain the correct communication cost in the DS model. Finally,
note that these variables also result in minor changes for the remaining communication
constraints in the DS model: to ensure that we only communicate values that are already
available, we now need to use senttimesv,p,s ≤ p · presv,p,s.

Altogether, the ILP formulations above use O(n · P · S) variables in the DS, DB and FB
models, and O(n ·P 2 ·S) variables in the FS model. Note, however, that reducing the number
of variables in the DS model also has a slight drawback. In particular, the formulations in
the DB, FS and FB models ensure that the vast majority of variables are binary, and there
are only O(P · S) variables (for cost measurement) that can take arbitrary integer values.
In contrast to this, when introducing the senttimesv,p,s variables into the DS model, the
number of non-binary variables increases to O(n ·P ·S). However, recall that senttimesv,p,s

is in fact also restricted to the integer interval {0, ..., P}, so its domain is also not significantly
larger when P is a small constant.

The number of linear constraints, on the other hand, is dominated by the precedence
constraints in the DAG in most cases, which result in O(|E| ·P ·S) constraints. In particularly
sparse (non-connected) DAGs, we might have |E| < n, when the remaining constraints become
dominant; hence more formally, the number of constraints in the broadcast models is

O((n + |E|) · P · S) .

P. A. Papp, G. Anegg and A. N. Yzelman 61

The only exception to this is FS, where we also use O(n · P 2 · S) constraints to ensure the
correctness of the communication steps; hence in this model, the number of constraints is

O((n · P + |E|) · P · S) .

F.2 Brief overview of ILPs for other models
We note that multiple methods have been studied before to model scheduling problems as an
ILP; some overviews are available in e.g. [3, 29]. These works often consider other variants
of the DAG scheduling problem; however, the same general techniques can sometimes be
adapted to different model variants.

In particular, the straightforward ILP representation for classical models is a time-indexed
formulation where similarly to our ILP above, there is a variable compv,p,t to indicate if p

was computed on p in time step t. This allows for a simple expression of the constraints, but
the number of variables scales with the maximal possible makespan n, or even the sum of
work weights in the weighted case. This can be significantly larger than the factor S in our
representation.

For some scheduling problems, e.g. so-called resource-constrained scheduling, this method
also allows a formulation that does not scale with P . However, in case we have work
weights, even such a formulation can require O(n ·

∑
v∈v wwork(v)) variables, whereas in

our ILP, the number of variables does not scale with the weights at all. There are also
more sophisticated representations, e.g. the event-based representation of [29], which only
requires O(n2) variables even in case of work weights; it might be possible to also adapt
these techniques to classical scheduling models. However, even O(n2) can be a higher than
the number of variables we require in our ILP, e.g. if the number of supersteps is relatively
small (i.e. P · S ≤ n), for example, due to a relatively high latency L.

	1 Introduction
	2 Related work
	3 Models and definitions
	4 Comparison to other models
	4.1 Taxonomy of scheduling models
	4.2 Optimum costs and further properties

	5 Communication models within BSP
	6 NP-hardness
	7 Inapproximability
	8 Problem within a problem: communication scheduling
	9 Formulation as an ILP problem
	A Detailed definition of different model variants
	A.1 DB, FS and FB models
	A.2 Single-port duplex model
	A.3 MaxBSP
	A.4 The - model and subset-BSP
	A.5 Commdelay model variants
	A.6 BSP model extensions
	A.7 Edge-based communication

	B Proofs for Section 4
	B.1 Communication time intervals and h-relations
	B.2 Lemma 3
	B.3 Theorem 4
	B.3.1 Upper bound
	B.3.2 Lower bound of (2-)
	B.3.3 Lower bound of (32-)

	B.4 Propositions 5 and 6
	B.4.1 Proof of Proposition 5
	B.4.2 Proof of Proposition 6

	C Complexity for specific DAG classes
	C.1 Proof of Theorem 7
	C.1.1 Chain DAGs
	C.1.2 Discussion
	C.1.3 Connected chain DAGs

	C.2 Proof of Theorem 8
	C.3 Proof of Theorem 9
	C.3.1 Main ideas and tools
	C.3.2 Construction outline
	C.3.3 Scheduling the construction
	C.3.4 Making the communication times fixed
	C.3.5 Embedding 3-partition
	C.3.6 Technical details

	D APX-hardness
	D.1 Construction
	D.2 First observations
	D.3 Converting to a clean schedule
	D.4 Reduction

	E Communication scheduling
	E.1 CS with 2 processors
	E.2 NP-hardness in DB, FS and FB
	E.3 With communication weights
	E.4 Comments on latency

	F ILP representation
	F.1 ILP formulation details
	F.2 Brief overview of ILPs for other models

