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ABSTRACT

We study the problem of scheduling an arbitrary computational
DAGon a fixednumber of processorswhileminimizing themakespan.
While previous works have mostly studied this problem in rela-
tively restricted models, we define and analyze DAG scheduling
in the Bulk Synchronous Parallel (BSP) model, which is a well-
established parallel computing model that captures the communi-
cation cost between processors much more accurately. We provide
a detailed taxonomy of simpler scheduling models that can be un-
derstood as variants or special cases of BSP, and discuss the prop-
erties of the problem and the optimum cost in these models, and
how they differ from BSP. This essentially allows us to dissect the
different building blocks of the BSP model, and gain insight into
how each of these influences the scheduling problem.

We then analyze the hardness of DAG scheduling in BSP in de-
tail. We show that the problem is solvable in polynomial time for
some very simple classes of DAGs, but it is already NP-hard for
in-trees or DAGs of height 2. We also separately study the sub-
problem of scheduling communication steps, and we show that the
NP-hardness of this problem can depend on the problem parame-
ters and the communication rules within the BSP model. Finally,
we present and analyze a natural formulation of our scheduling
task as an Integer Linear Program.

CCS CONCEPTS
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reductions and completeness.
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1 INTRODUCTION

The optimal scheduling of complex workloads is a fundamental
problem not only in computer science, but also in various other
fields such as logistics and operations research. In a computational
context, one of themost natural applications of scheduling is when
we have a complex computation consisting of various different
subtasks, and we want to execute this computation on a parallel
(multi-processor or multi-core) architecture, while minimizing the
total time required for this. Unsurprisingly, this question has been
extensively studied already since the 1970s, and has gained even
more importance in the past decade with the widespread use of
manycore architectures.

In these scheduling problems, a computational task is represented
as a Directed Acyclic Graph (DAG), where each node corresponds

to a computational step or subtask, and each directed edge (D, E)
represents a dependency relation, i.e. that the processing of node
D has to be finished before the processing of node E begins, since
the output of operation D is required as an input for operation E .
This DAG model of general computations is not only prominent
in scheduling, but also in many further topics such as pebbling,
which studies time-memory tradeoffs in a given computation.

However, from a complexity-theoretic perspective, the schedul-
ing of general DAGs is already a hard problem even in very simple
settings, e.g. even in models that heavily simplify or completely ig-
nore the communication costs between processors, which is known
to be the main bottleneck in many computational tasks in practice.
Due to this, most theoretical works so far have focused on ana-
lyzing the complexity of scheduling in these rather simple mod-
els, and while models with more realistic properties were often
introduced, the theoretical properties of the scheduling problem
in these more realistic models have received little attention.

On the other hand, the parallel computing community has de-
veloped far more sophisticated models to accurately quantify the
real cost of parallel algorithms in practice. One of the most no-
table among these is the Bulk Synchronous Parallel (BSP) model,
which is still relatively simple, but provides a delicate cost func-
tionwhich also captures the volume of communicated data and the
synchronization costs in a given parallel schedule. BSP (and other
such models) are fundamental tools to evaluate and compare par-
allel algorithms, both in theoretical works and in concrete practi-
cal implementations. However, previous theoretical works on BSP
mostly focus on finding and analyzing parallel schedules for a spe-
cific algorithm, and they do not study BSP as a model for schedul-
ing general DAGs, i.e. an arbitrary computational task.

Our goal in this paper is to bridge this gap between theory and
practice to some extent, and understand the fundamental theoret-
ical properties of the DAG scheduling problem in the BSP model.
The more detailed cost function of BSP naturally results in an even
more complex scheduling problem; on the other hand, understand-
ing the key properties of this problem is crucial, since it provides
a more accurate model to evaluate parallel schedules for general
computations in practice.

More specifically, our main contributions are as follows:

(i) We first define the DAG scheduling problem in the BSP model.
We then provide a taxonomy of scheduling models from previ-
ous works, and show that many of these can be understood as
a special case of BSP; as such, analyzing the relations between
these models can essentially allow us to gain insight into how
each of the different aspects of the BSPmodel affects the sched-
uling problem. We also discuss several slightly different vari-
ants of the BSP model; our following results indicate that even
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seemingly small changes in the model definition may have a
significant effect on the theoretical properties of the model.

(ii) We then analyze the complexity of the BSP DAG scheduling
problem, with the goal of understanding when (i.e. for which
kind of DAGs) the problembecomesNP-hard. In particular, our
results show that BSP scheduling is still solvable in polynomial
time for simple DAGs that consist of several connected chains,
but it is already NP-hard for slightly more complex classes of
DAGs, such as in-trees or DAGs of height 2.

(iii) We separately analyze the subproblem of scheduling commu-
nication steps, assuming that the assignment of tasks to proces-
sors and so-called supersteps is already fixed. We show that in
several variants of the BSP model, this subproblem of finding
the optimal communication schedule is already NP-hard.

(iv) Finally, we present a natural formulation of the BSP schedul-
ing task as an Integer Linear Programming (ILP) problem; this
provides a simple approach in practice to find the optimal BSP
schedules for smaller DAGs using ILP solvers. We analyze and
compare the number of variables and constraints required for
such a formulation in different variants of the model.

We note that our technically most involved contributions corre-
spond to points (ii) and (iii) above; however, in the main part of
the paper, we instead put more focus on point (i), in order to pro-
vide more intuition on the behavior and properties of the models.

2 RELATED WORK

Scheduling is one of the most fundamental problems of computer
science, and has been studied extensively since the 1970s. DAGs are
one of the most common models for such problems, since in vari-
ous applications, the subtasks or computational steps have prece-
dence relations between them (subtask E can only be started after
another subtask D has been finished). Since we focus on BSP, we
assume in the paper that our DAG corresponds to a computational
task.

The first results on DAG scheduling considered a simple setting
where communication between the processors is free, which es-
sentially corresponds to the PRAMmodel. The numerous results in
this model include a line of polynomial algorithms for % = 2 proces-
sors [5, 10, 42], polynomial algorithms for special classes of DAGs
(but % > 2) [6, 7, 11], hardness results for the % =∞ case [3, 23, 46],
and a range of results for weighted DAGs [4, 22, 34]. The results
on some of these topics, e.g. approximation algorithms, are still
rapidly improving in recent years [13, 26, 28, 44]. On the other
hand, some basic questions are still open even in this fundamental
model: for instance, it is still not known whether scheduling for
some fixed % > 2 is NP-hard.

A more realistic version of this model was introduced in the late
1980s [37, 50], where there is a fixed communication delay between
processors. Related work has also explored numerous algorithms
and hardness results in this setting, in particular for the case of
unit-length delays [16, 18] or infinitely many processors [18, 30,
35]. The approximability of the optimal solution is also a central
question in this model that has been receiving significant attention
even in recent years [21, 29].

This communication delay model is still unrealistic in the sense
that it allows an unlimited amount of data to be communicated
in any single time unit. To our knowledge, the only more sophis-
ticated DAG scheduling model which measures communication
volume is the recently introduced single-port duplex model [36].
However, this model has not been studied thoroughly from a the-
oretical perspective, and it also has the drawback that in contrast
to BSP, it cannot be extended by some real-world aspects such as
synchronization costs.

We describe the scheduling models above in more detail in Sec-
tion 4. We note that there are also numerous extensions of these
problem models with further properties, such as heterogeneous
processing units, jobs that require several processing units, or sep-
arate deadlines for given tasks [24, 25, 27, 45].

On the other hand, BSP has been introduced as a prominent
model of parallel computing in 1990 [47], and studied extensively
ever since [2, 31, 43]. Themodel has also found its way into various
applications, most notably through the BSPlib standard library [17]
and its different implementations [51, 52]. Further fundamental re-
sults on BSP include the analysis of prominent algorithms in this
model [32, 33], as well as the extension of BSP to multi-level archi-
tectures [48, 49]. However, to our knowledge, BSP has mostly been
used so far to analyze the computational costs of specific parallel
implementations of concrete algorithms, as opposed to our work,
where we apply it as a general model to evaluate the scheduling of
any computational DAG.

3 MODELS AND DEFINITIONS

Computational tasks aremodelled as aDirectedAcyclic Graph (DAG)
� , with the set of nodes (subtasks) denoted by + , and the set of di-
rected edges (dependencies) by �. We useD and E to denote individ-
ual nodes, and = to denote the number of nodes |+ |. An edge (D, E)
indicates that subtask D has to be finished before the computation
of subtask E begins. The indegree and outdegree of E is the number
of incoming and outgoing edges of E , respectively. We will also use
[:] as a shorthand notation for the integer set {1, ..., :}.

For scheduling, we assume that we have % identical processors
(with % being some fixed constant). Our goal is to execute the com-
putation (all nodes of�) on these % processors in a parallel manner,
while minimizing the amount of time this takes, i.e. the time when
the last node is executed.

In classical scheduling models, a scheduling is usually an assign-
ment of the nodes to processors c : + → [%] and concrete time
steps C : + → Z+. The validity conditions on such a schedule (to
e.g. satisfy the precedence constraints) are model-dependent; see
Section 4.1 for details on specific models. The goal is then to mini-
mize the makespan, i.e. maxE∈+ C (E).

3.1 The BSP model

BSP is a very popular model for the design and evaluation of par-
allel algorithm implementations. To our knowledge, general DAG
scheduling has not been studied in thismodel before, but extending
the interpretation of BSP to this setting is rather straightforward.

3.1.1 Overview. In contrast to classicalmodelswhere nodes are as-
signed to concrete points in time, the BSPmodel instead divides the
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execution of nodes into larger batches, so-called supersteps. Each
superstep consists of two phases, in the following order:

1. Computation phase: each processor may execute an arbitrary
number of computation steps, but no communication between
the processors is allowed.

2. Communication phase: processors can communicate an arbitrary
number of values to each other, but no computation is executed.

The main motivation behind these supersteps is to encourage ex-
ecuting the necessary communications in large blocks, because in
practice, inter-processor communication often comes with a large
fixed cost (e.g. synchronization or network initialization) that is in-
dependent from the data volume, and hence it is desired to have as
few communication phases as possible.

3.1.2 Formal definition. Formally, this means that a BSP schedule
with a given number of supersteps ( consists of:

• An assignment of nodes to processors c : + → [%] and to
supersteps g : + → [(]. For simplicity, we introduce the no-
tation � (B,?) for the set of nodes assigned to processor ? and
superstep B , i.e. all E ∈ + with c (E) = ? , g (E) = B . We can
imagine the nodes of� (B,?) to be executed in an arbitrary (but
topologically correct) order on ? in superstep B .

• A set Γ of 4-tuples (E, ?1, ?2, B) ∈ + ×[%]× [%]× [(], indicating
that the output of node E is sent from processor ?1 to proces-
sor ?2 in the communication phase of superstep B . In this base
variant of the BSP model, we only include ?1 in these 4-tuples
for clarity, but we always assume ?1 = c (E), i.e. the value is
sent from the processor where it was computed.

A valid BSP schedule must satisfy the following conditions:

(i) A node E can only be computed if all of its predecessors are
available, i.e. they were either computed on the same proces-
sor in an earlier (or the same) superstep, or sent to that pro-
cessor before the given superstep. That is, for all (D, E) ∈ �, if
c (D) = c (E) thenwemust have g (D) ≤ g (E), and if c (D) ≠ c (E)
then we must have (D, c (D), c (E), B) ∈ Γ for some B < g (E).

(ii) Communication steps in Γ can only send already computed
values; that is, if (E, ?1, ?2, B) ∈ Γ, then ?1 = c (E), and g (E) ≤ B .

3.1.3 Cost function. The cost of a superstep is defined as follows.
The computation phase can be executed in parallel on the different
processors, so its cost (the amount of time it takes) in superstep
B ∈ [(] is the largest amount of computation executed on any of
the processors. More formally, the work cost of superstep B (first
for a given processor ? ∈ [%], and then in general) is defined as

�F>A:
(B,?)

= |� (B,?) | ,

�F>A:
(B)

= max
? ∈[% ]

�F>A:
(B,?) .

Communication costs, on the other hand, are governed by two
further global problem parameters: 6 ∈ N is the cost of commu-
nicating a single unit of data, and ! ∈ N is the fixed latency cost
incurred by each superstep. BSP assumes that different values can
be communicated in parallel in general, but any processor can only
send and receive a single value in a single time unit. As such, BSP
defines a send and receive cost as the number of values sent and
received, respectively, by processor ? in superstep B , and then the

processor 2, superstep 1

processor 1, superstep 1

proc. 2, sup. 2

proc. 1, sup. 2

Figure 1: Illustration of an example BSP schedule for a DAG.

Note that the labelled boxes in the figure only represent the

computation phase of a given superstep; the superstep itself

consists of this computation phase, and also the communi-

cation phase that follows.

communication cost of a superstep (for ? , or in general) is the maxi-
mum of these values; this cost function is also known as ℎ-relation.
More formally:

�B4=C
(B,?)

= |{(E, ?1, ?2, B1) ∈ Γ | ?1 = ?, B1 = B}| ,

�A42
(B,?)

= |{(E, ?1, ?2, B1) ∈ Γ | ?2 = ?, B1 = B}| ,

�2><<
(B,?)

= max(�B4=C
(B,?) , �A42

(B,?) ) ,

�2><<
(B)

= max
? ∈[% ]

�2><<
(B,?) .

The cost� (B) of superstep B and the cost� of the entire schedule
is then defined through the sum of these terms:

� (B) = �F>A:
(B) + 6 ·�2><<

(B) + ! ,

� =

∑

B∈[( ]

� (B) .

For a concrete example, consider the BSP schedule illustrated in
Figure 1, and let B = 1, ?1 = 1, ?2 = 2. Here processor ?1 computes
4 nodes, and processor ?2 computes 5 nodes, so �F>A:

(B,?1) = 4,
�F>A:

(B,?2) = 5, and�F>A:
(B)

=max(4, 5) = 5 in the computation
phase. In the communication phase, ?1 must send a single value to
?2 (so�B4=C (B,?1) =�A42

(B,?2) = 1), while ?2 must send two values
to ?1 (�B4=C (B,?2) = �A42

(B,?1) = 2). This implies �2><<
(B,?1) =

�2><<
(B,?2) = max(2, 1) = 2, and hence �2><<

(B)
= 2. The total

cost of the superstep is � (B) = 5 + 2 ·6 + !.
For a more detailed discussion on the design and specific ingre-

dients of the BSP model, we refer the reader to [2, 31].

3.1.4 As a scheduling problem. These definitions already allow us
to formally define the DAG scheduling problem in the BSP model.

Definition 3.1. Given an input DAG, the goal of the BSP schedul-
ing problem is to find a feasible BSP schedule (c, g, Γ) as described
above, with minimal cost � .

In the decision version of the problem, we also have a maximal
cost parameter �0, and we need to decide whether there is a BSP
schedule with cost � ≤ �0. For simplicity, we will often focus on
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the simpler case of ! = 0, which is already rather similar to the
general version of ! ≥ 0 in terms of hardness.

From a complexity theory perspective, it is important to note
that we consider the parameters %,6, ! to be small fixed constants
(properties of our computing architecture), and not parts of the
problem input. We especially emphasize this for % , since in con-
trast to our work, some other works assume that % is an input
variable that can be up to linear in =; however, this is unrealistic in
most applications, and also makes the problem unreasonably hard
even for trivial DAGs. In general, both settings (fixed % and vari-
able % ) have been extensively studied before, and are distinguished
by “%<” and “%” in the classical 3-field notation.

We also point out that the number of supersteps ( is not a pa-
rameter of the problem, and can be freely chosen by a scheduling
algorithm; we only used it above because the problem definition is
easier to present for a fixed ( .

3.2 Further model extensions

There are also several simple generalizations of scheduling mod-
els that occur frequently in the literature, extending the problem
with further real-world aspects. Most of our results will focus on
the base model described above, but we occasionally also highlight
how our observations carry over to these extended models.

3.2.1 Work and communicationweights. Real-world computations
often consist of subtaskswith varying computational requirements.
Hence one very natural extension of this setting is to also assume
a work weight function FF>A: : + → Z+ that defines the amount
of time required to execute each node. Similarly to other works,
we assume for simplicity that these weights are integers. Most
scheduling models are easy to extend with these work weights:
e.g. in case of our BSP, the work cost of a superstep is then under-
stood as the sum of nodeweights in the superstep, i.e.�F>A:

(?,B)
=∑

E∈� (B,?) FF>A: (E).
Besides heterogeneous workweights, the size of the output data

of nodes can also differ significantly, and hence it can take a differ-
ent amount of time to communicate specific values between the
processors. As such, another extension is to assume communica-

tion weights F2><< : + → Z+ which describe the data size (e.g.
number of bytes) to be communicated in case of each node (alterna-
tively, some works consider this to be a functionF2><< : � → Z+;
we discuss this in Section 5). The communication cost can then also
be adjusted accordingly, bymultiplying each term in�B4=C (B,?) and
�A42

(B,?) by the respectiveF2><< (E) weight.

3.2.2 Duplication. Our definitions above assign every computa-
tional task to a single processor and time step. However, many
works also allow duplication (also called replication), i.e. to execute
the same node multiple times, on different processors. Formally, a
schedule in this case becomes a function g : + × [%] → Z+ ∪ {∅}
such that for all E ∈ + there exists a ? ∈ [%] with g (E, ?) ≠ ∅. Nat-
urally, these duplication steps come with more total time spent on
computation, but on the other hand, they can reduce the required
amount of communication between the processors, hence decreas-
ing the scheduling cost altogether (see Section 4.4 for examples).

4 COMPARISON TO OTHER MODELS

4.1 Taxonomy of simpler models

In the most basic scheduling model, which we call classical sched-
uling, nodes are assigned to processors c : + → [%] and time steps
C : + → Z+, with two conditions for correctness: we cannot exe-
cute two nodes on the same processor at the same time (�D, E ∈ +
with c (D) = c (E), C (D) = C (E)), and we must respect the prece-
dence constraints (∀(D, E) ∈ � we need C (D) < C (E)). The cost of a
schedule is simply its makespan maxE∈+ C (E). Since there are no
communication costs between the processors, this setting can be
understood as scheduling in a simple PRAM model.

A slightly more realistic version of this setting also considers
communication delays between processors; we will refer to this as
the commdelay model. This model has an additional input parame-
ter 6, and it is only different in the second validity constraint: for
all (D, E) ∈ �, if c (D) = c (E), then it still requires C (D) < C (E), but
if c (D) ≠ c (E), then we now need to have C (E) > C (D) + 6.

Note that BSP has two significant differences from this commde-
lay model. On the one hand, commdelay allows a processor ? to ex-
ecute a computation and a communication simultaneously, while
in BSP, these are explicitly separated into a computation / commu-
nication phase. On the other hand, commdelay in fact allows any
number of values to be sent from ?1 to ?2 simultaneously, whereas
BSP also considers the communication volume: sending : values
from ?1 to ?2 takes : times as long as sending only a single value.

Previous work has already briefly considered the extension of
the commdelay model with both of these modifications separately:

• The work of [9] considers a variant of commdelay where com-
putation and communication can only happen in separate phases.
The paper proves several hardness results in this model, and in
particular, it studies how a standard commdelay schedule can
be transformed into this commdelay model with phases.

• The work of [36] introduces the so-called single-port duplex

(SPD) model, which extends commdelaywith themeasuring of
communication volume: in particular, besides the assignment
C : + → Z, the schedule must also assign the communication
of any value from ?1 to ?2 to a concrete time step, and each
processor can only send or receive a single piece of data in
each time unit (see Appendix A or [36] for more details).

The models discussed above are summarized in Table 1 accord-
ing to how they capture communication costs, and whether they
allow computation and communication simultaneously. The table
shows that DAG scheduling in the BSP model indeed fills a natural
place in this taxonomy of models, which further indicates that our
interests in its properties is well-justified. Furthermore, comparing
specific results for BSP and for simpler models in this table allows
us to gain further insight into how specific aspects of the model
affect the properties of the scheduling problem.

There is a further technical question that arises regarding the
data volume-aware models in the last column of this table. In SPD,
each data transfer is assigned to a specific time step, whereas in
BSP, we define communication costs through the simpler notion of
ℎ-relations. It is a natural question whether these two methods in-
deed describe the same communication cost function (for ! = 0 in
BSP). That is, to justify the use ofℎ-relations, we need to show that

4



DAG Scheduling in the BSP Model

free communication

(no cost)

simplified comm. cost

(any amount of data
in a single step)

exact comm. cost

(cost depends on
data volume)

comp. & comm.
simultaneously

classical
scheduling
[5, 28, 42, . . . ]

commdelay
[21, 37, 50, . . . ]

single-port duplex
[36]

comp. & comm.
in separate phases

classical
scheduling
[5, 28, 42, . . . ]

commdelay
with phases

[9]

BSP
[novel for DAGs]

Table 1: Simplified taxonomy of DAG schedulingmodels. The horizontal axis shows different models of capturing the commu-

nication cost, whereas the vertical axis shows if simultaneous execution of computation and communication steps is allowed.

if each processor ? is sending and receiving�B4=C (B,?) and�A42 (B,?)

values, respectively, then these communications steps can indeed
be scheduled into�2><<

(B) time steps according to the rules of the
SPD model, i.e. such that each processor only sends and receives
a single value in each step. Fortunately, this is rather straightfor-
ward with standard graph-theoretic tools, by decomposing a bipar-
tite multigraph on % + % nodes into perfect matchings.

Lemma 4.1. If every processor sends and receives at most� values

in a communication phase, then it can be scheduled into� time slots.

However, the same question is more technical with communica-
tion weights; we show that in this case, the lemma does not hold
if the communication steps cannot be split into smaller parts.

4.2 Separation and synchronization

When studying the last column of Table 1, one can observe that
the difference between SPD and BSP is, in fact, twofold. On the
one hand, BSP assumes that at any point in time, a processor can
only do either computation or communication, but not both (e.g.
because the flow of communication is controlled by the same pro-
cessing unit that executes computation). On the other hand, BSP
assumes that the whole computation is divided into supersteps,
which is also called barrier synchronization: in order to communi-
cate a value E , we first need a point in timewhen none of the proces-
sors are executing any computations, and hence they can initialize
the communication process. These global synchronization points
then naturally divide the execution into supersteps, and only al-
low processors to communicate values that were already available
before the last synchronization point.

If we separate these two properties from each other, we can ex-
tend our taxonomy into Table 2, which includes furthermodel vari-
ants that are closely related to BSP.We briefly discuss thesemodels
below, with the details deferred to Appendix A.

First consider the case when global synchronization is still re-
quired, but processors are free to compute and communicate si-
multaneously. In fact, the original definition of BSP by Valiant [47]
corresponds to this setting: the cost of a superstep was defined as

� (B) = max

(
�F>A:

(B) , 6 ·�2><<
(B) + !

)
,

hence implicitly assuming that the computations and communica-
tions of superstep B can happen simultaneously. We will refer to

?2, B =1

?1, B =1

?2, B =2

?1, B =2

?2, B =3

?1, B =3

. . . . . .

. . .

E1 E2

E3

Figure 2: Example for interpreting DAG scheduling in the

maxBSP model (with only some of the nodes shown).

this model as maxBSP. In contrast to [47], other works, including
recent textbooks on BSP [2], apply the definition in Section 3.1.2,
where�F>A:

(B) and 6 ·�2><<
(B) +! are summed up to obtain� (B) .

However, the interpretation of maxBSP for DAG scheduling re-
quires some consideration. In the example in Figure 2, E2 needs to
be the last node to be computed on processor ?1 in superstep 2,
and E3 must be the first node to be computed on ?2 in superstep 3;
this shows that the communication phase of superstep 2 (sending
E2 from ?1 to ?2) cannot happen simultaneously with the compu-
tation phase of either superstep 2 or 3. As such, simply applying
the maxBSP cost function leads to an inaccurate model.

For a reasonable model, we also need to consider which compu-
tations and communications can happen at the same time. For in-
stance, E1 is already computed in superstep 1, and only required in
superstep 3, so it can indeed happen simultaneously with the com-
putations in superstep 2. In general, DAG scheduling in maxBSP
means that each superstep B consists of a simultaneous computa-
tion and communication phase, and we can only send a value E

from ?1 to ?2 if E was computed on ?1 in superstep (B − 1) or
before, and is only needed on ?2 in superstep (B + 1) or after.

On the other hand, consider the case when a processor can only
do either computation or communication at a given point in time,
but no global synchronization is required between the processors.
Intuitively, this setting allows e.g. two processors ?1 and ?2 to
stop computation and exchange several values with each other,
while the rest of the processors carry on computing other nodes
in the meantime. One can interpret this case as the so-called U− V
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free communication

(no cost)

simplified comm. cost

(any amount of data
in a single step)

exact comm. cost

(cost depends on
data volume)

comp. & comm.
simultaneously

no
sync

classical
scheduling

commdelay single-port duplex

sync
classical

scheduling
commdelay
with sync points

maxBSP

comp. & comm.
separately

no
sync

classical
scheduling

U− V with V = 0

(or subset-CD)

U− V with U = 0

(or subset-BSP)

sync
classical

scheduling
commdelay
with phases

BSP

Table 2: Extended table of DAG scheduling models. The vertical axis is split according to two properties: (i) whether computa-

tion and communication are allowed simultaneously, and (ii) whether barrier synchronization is required for communication.

model [41] with a choice of U = 0, although this concept is of-
ten used as only a cost function (instead of a complete model), and
hence its definition varies across different works. Alternatively, we
could assume that barrier synchronization is still required, but only
among the subset of nodes that are actually communicating, thus
creating a (?1, ?2)-specific communication phase. This model vari-
ant, sometimes called subset-BSP, was also discussed before to an-
alyze whether barrier synchronization is indeed a key property of
the BSP model [15, 40].

As shown in Table 2, we can also apply the same separation idea
to obtain 4 slightly different variants of the commdelay model. We
briefly define and discuss these in Appendix A for completeness. In
contrast to this, classical scheduling remains identical in all these
cases, since communications take no time here, and as such, all
integer points in time can be used for synchronization.

We note that all models with barrier synchronization can be nat-
urally extended with a latency parameter ! similarly to BSP.

4.3 Optimum cost in different models

One of the most natural questions regarding this taxonomy is how
the optimum costs in these different models relate to each other in
a given DAG. Firstly, note that in any of the models, one of the pro-
cessors must have a work cost of =

% at least; this provides a lower
bound on the optimum in all cases. On the other hand, in each
model, executing the entire DAG on a single processor (without
communication) always provides a viable solution of cost =.

Proposition 4.2. We have =
% ≤ OPT ≤ = in each of these models,

with OPT denoting the optimum cost.

This also shows that the trivial solution of using only a single
processor is a factor % approximation of the optimum in any of
these models. The same argument naturally carries over to the case
of work weights if we replace = by

∑
E∈+ FF>A: (E).

Next we compare the optimum cost in the two fundamental
models, classical scheduling and commdelay, to the BSP optimum
(denoted by OPT2;0BB , OPT�� and OPT�(% , respectively, assum-
ing !=0 in BSP). We clearly have OPT2;0BB ≤ OPT�� ≤ OPT�(% ;
however, finding the maximal difference is more involved.

Lemma 4.3. For any DAG and parameters % and 6, we have

• OPT�� ≤ min(1 + 6, %) · OPT2;0BB ,

• OPT�(% ≤ % · OPT2;0BB ,

• OPT�(% ≤ % · OPT�� .

For each case, there is a DAG construction where this bound is essen-

tially tight: we show matching lower bounds of both % and (1+6−Y)
(for any Y > 0) in the first case, and a matching lower bound of % in

the second and third cases.

The proof of the lemma is discussed in Appendix B. Intuitively,
theworst case betweenOPT2;0BB andOPT�� is whenwe are forced
to communicate a new value after every computation step, thus
increasing OPT2;0BB by a (1+6) factor. For BSP, a similar construc-
tion can result in such a high communication cost that it is simply
more beneficial to execute the entire DAG on a single processor,
reaching the maximal difference from Proposition 4.2.

Due to our focus on BSP, we also analyze the relation between
the models in the last column of Table 2 in detail. We denote their
optimum costs by OPT(%� , OPT<�(% , OPTV , OPT�(% from top to
bottom, again for ! = 0. The restrictiveness of the models implies
OPT(%� ≤ OPT<�(% ≤ OPT�(% and OPT(%� ≤ OPTV ≤ OPT�(% .
We complement this by the following observations.

Theorem4.4. For anyDAGand parameters% and6, the optimum

cost between any two of the models in the last column of Table 2 can

differ by a factor 2 at most, or equivalently, we have

OPT�(% ≤ 2 · OPT(%� .

Furthermore, we present DAG constructions that prove

• an essentially matching lower bound of (2 − Y) on the differ-

ence for the cases (OPT(%� ≤ OPTV ) , (OPT(%� ≤ OPT�(% ),
(OPT<�(% ≤OPTV ) and (OPT<�(% ≤OPT�(% ) ,

• a slightly looser lower bound of ( 3
2
− Y) on the difference for

the cases (OPT(%� ≤ OPT<�(% ), (OPTV ≤ OPT�(% ) and

(OPTV ≤OPT<�(% )

for any Y > 0.
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3

(a)

2

2

(b)

Figure 3: Example DAGs with work weights in the classical

scheduling model with barrier synchronization, for % = 3.

The weights are only shown for nodes of non-unit weight.

4.4 Further properties

We discuss a few further properties of the models. Firstly, while all
cells in the first column of the table seem identical, even this clas-
sical setting becomes more interesting if we have work weights.

Proposition 4.5. In classical scheduling with work weights, bar-

rier synchronization can increase the optimum cost.

Proof sketch. Consider the weighted DAG in Figure 3a with
% = 3 processors; this can easily be scheduled in 5 timesteps in
the classical setting. However, when barrier synchronization is re-
quired, the same DAG will have an optimal makespan of 6 in clas-
sical scheduling: since no communication is allowed while the task
of weight 3 is being processed, it is not possible use the other two
processors to parallelize the upper branch of the DAG. �

The same construction idea can also be generalized to show a
factor 2 difference between the optimum costs. Hence in case of
weighted DAGs, barrier synchronization canmake a significant dif-
ference even in the classical model.

Another natural question is the role of duplication in this tax-
onomy: in which of these models can it reduce the optimum cost?

Proposition 4.6. Duplication can reduce the optimum cost

• in all models with communication cost (middle and right-hand

column of Table 2),

• in the classical scheduling model with barrier synchronization,

but only if we have work weights.

Proof sketch. For the first point, consider a simple DAG con-
sisting of two directed paths of length ℓ , and a common source
node E0 that has an edge towards the initial node of both paths.
Without duplication, the optimal schedule assigns the two paths
to ?1 and ?2, and the source node to, say, ?1; this has a work cost
of ℓ +1 and communication cost 1 ·6 in all of these models. On the
other hand, if E0 is duplicated on both ?1 and ?2, then no commu-
nication is required, and the total cost is only ℓ + 1.

In classical scheduling without work weights, duplication can-
not help, since after each time step, the computed values can be
freely distributed to all processorswithout cost. However, consider
the weighted DAG of Figure 3b with % = 3. Classical scheduling
without synchronization allows a makespan of 5 here. If synchro-
nization is required, then due to the weight-2 nodes on the critical
paths, it is not possible to send a value (the grey node) at C = 2

or C = 3, and hence the best makespan becomes 6. However, if in-
stead we can duplicate the grey node on two processors, then we
can avoid this problem, and again obtain a makespan of 5. �

?3, B =1

?2, B =1

?1, B =1

?3, B =2

?2, B =2

?1, B =2

?3, B =3

?2, B =3

?1, B =3

... ... ... ...

... ... ... ...

... ... ... ...

Figure 4: Example BSP schedule where free data movement

allows a lower communication cost than direct data transfer.

5 COMMUNICATION MODELS WITHIN BSP

In the rest of the paper, we focus on the BSP model. However, even
within BSP, there are several different options to model the com-
munication rules; while these are seemingly small changes in the
model definition, we will see that they can have a significant effect
on the properties of the model. We provide a more formal defini-
tion of each of these variants in Appendix A.

Free movement of data. Recall that for simplicity, our base BSP
model assumed c (E) = ?1 for all (E, ?1, ?2, B) ∈ Γ, i.e. values are
always sent from the processorwhere theywere computed. In prac-
tice, there is no reason to make this restriction; in order to transfer
a value from ?1 to ?2, one might as well send it from ?1 to a third
processor ?3 first, and then from ?3 to ?2.

Moreover, there are simple examples where this indeed results
in a lower communication cost altogether. Consider the BSP sched-
ule in Figure 4 with % =3 processors. This schedule has a node that
is computed on ?3 in superstep 1, but later only needed on ?1 in su-
perstep 3. In case of direct transfer, we can send this value from ?3
to ?1 in either superstep 1 or 2; however, ?1 must already receive a
value in superstep 1, and ?2 must already send a value in superstep
2, so both of these choices increase the communication cost in one
of the supersteps. On the other hand, with free data movement, we
can send the value from ?3 to ?2 in superstep 1, and then from ?2
to ?1 in superstep 2, without increasing the communication cost
in either superstep. Thus allowing unrestricted movement of data
between the processors can indeed lead to better solutions.

Singlecast or broadcast. Another interesting question is what hap-
pens if processor ? wants to send a single value E to multiple other
processors ?1, ..., ?: in the same superstep. In our base model, this
required a separate entry (E, ?, ?8 , B) for all 8 ∈ [:], and hence con-
tributed : units to the send cost �B4=3

(B,?) . This is a reasonable
assumption e.g. if the communication network topology is a fully
connected graph; in this case, ? needs to send this value over :
distinct network links.

On the other hand, there are settings where it is more reasonable
to only charge a single unit of send cost for this, or in other words,
to assume that data transfers are broadcast operations, and hence
their values can be received by any number of other processors.
This can correspond to e.g. a star-shaped network topology with a
single communication device in themiddle.While this again seems

7
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like a minor modification to the BSP cost function, we will see that
it can actually affect several properties of the problem.

Combinations. These two model variations can also be combined
with each other to form altogether four different communication
models within BSP. We assign abbreviations to each of these mod-
els, as shown in Table 3, and we will study several properties of
the problem in these models in the next sections.

We also note that these modelling questions only arise in the
last column of Table 2; in the commdelay model, these variants are
in fact all identical.

Node- or edge-based communication. Finally, we point out that (as
per our definitions in Section 3.1) we assume a node-based commu-
nication model throughout the paper. That is, each communication
step corresponds to sending the output of some node D to another
processor, which is then saved on this other processor indefinitely.
In particular, if D is computed on ?1, and it has many outgoing
edges (D, E1), ..., (D, E: ) ∈ � to some nodes E1, ..., E: which are all
assigned to ?2, then this only incurs a single communication step
in our model. This is in line with several recent works that also
assume such a node-based communication model [38, 39].

In contrast to this, some other works (e.g. [36]) assume an edge-
based model, where the situation above incurs : distinct commu-
nication steps, one for each of the edges (D, E8 ). This edge-based
model might be motivated by a setting where the memory of pro-
cessors is limited; however, in general, it can overestimate the real
communication cost by a factor : .

Note that if we have communication weights, then the natural
choice forF2><< is a function + → Z+ in this node-based model.
On the other hand, other works assuming an edge-based model
sometimes use a functionF2><< : � → Z+ instead.

6 NP-HARDNESS

Given the DAG scheduling problem in the BSP model, one of the
most fundamental questions is its computational hardness. Not sur-
prisingly, it turns out that the problem is NP-hard in general DAGs.
However, this raises a natural follow-up question: in which simpler
subclasses of DAGs can the problem still be solved in polynomial
time, and in which subclasses is it already NP-hard? This question
has also received extensive attention in other scheduling models.

The simplest non-trivial subclass ofDAGs is so-called chainDAGs,
where both the indegree and outdegree of each node is upper bounded
by 1. This simple subclass of DAGs has been analyzed in several
different scheduling models before [8, 45], and in particular, has
even been explicitly studied in BSP [14], under slightly different
assumptions. Additionally, we also consider a slightly more realis-
tic version of this subclass (in terms of modelling computations):
let us say that a DAG is a connected chain DAG if it can be obtained
by adding an extra source node E0 to a chain DAG, and drawing
an edge from E0 to the first node of every chain.

We show that for these relatively simple classes of DAGs, the
optimal BSP schedule can still be found in polynomial time.

Theorem 6.1. The BSP scheduling problem can be solved in poly-

nomial time in = for chain DAGs and connected chain DAGs.

The key observation in the proof is that the optimal BSP sched-
ule in chain DAGs always consists of at most % supersteps; this

Singlecast Broadcast

Direct
transfer

DS model

CS: open problem

ILP: $ (= ·% ·() vars

DB model

CS: NP-hard

ILP: $ (= ·% ·() vars

Free data
movement

FS model

CS: NP-hard

ILP: $ (= ·%2 ·() vars

FB model

CS: NP-hard

ILP: $ (= ·% ·() vars

Table 3: Different communicationmodels within BSP, and a

summary of their properties established in Sections 7 and 8.

allows us to find the optimum through a rather complex dynamic
programming approach. Adapting the same proof to connected
chain DAGs only requires some further technical steps.

On the other hand, it turns out that BSP scheduling already be-
comes NP-hard in even slightly more complex subclasses of DAGs.
In particular, we analyze two further classes of DAGs. On the one
hand, we consider DAGs with height only 2, where the height of
a DAG is defined to be the number of nodes in the longest di-
rected path. On the other hand, we consider in-trees, which are
DAGs where every node has outdegree at most 1. We show that in
these (still relatively simple) classes, the BSP scheduling problem
is already NP-hard. Since the scheduling problem is known to be
polynomially solvable for these specific classes of DAGs in simpler
models [11, 30], this highlights the fact that the more sophisticated
cost function of BSP indeed comes at the price of increased com-
putational complexity.

Theorem 6.2. The BSP scheduling problem is already NP-hard if

restricted to DAGs of height 2.

Theorem 6.3. The BSP scheduling problem is already NP-hard if

restricted to in-trees.

Proof sketch. The proof of Theorem 6.2 uses a reduction from
the :-clique problem, and can be loosely understood as an adapta-
tion of the reduction technique for partitioning in [38] to our BSP
scheduling setting. Intuitively, the second level of the DAG con-
sists of gadgets representing each node of the input graph, and we
will ensure that at most : of these node gadgets can be assigned to
?1 without incurring a too large work cost. The edges of the input
graph, on the other hand, are represented by gadgets in the first
level of the DAG, and have an edge to both of the incident node
gadgets. Each edge gadget will incur communication if one of the
corresponding node gadgets is not assigned to ?1. We use further
nodes in the construction to ensure that the cost of these commu-
nication steps indeed needs to be summed up, and cannot be par-
allelized within the ℎ-relation. With the appropriate cost limit �0,
the construction only admits a valid schedule if there are : nodes
in the original graph that form a clique.

The proof of Theorem 6.3 is our most technical proof, requir-
ing % = 16 processors; we only provide a brief intuitive overview
here. Firstly, our DAG will ensure that in order to keep the cost be-
low �0, we can only have =

% computations on any processor, and
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only 3 communication steps altogether (for some 3). The construc-
tion then mainly consists of cone gadgets, i.e. nodes D0 with a very
high number of predecessors; these incur a very large communica-
tion cost unless (almost) all the predecessors are assigned to the
same processor as D0. By creating a large cone of size

=
% around D0

(which occupies a processor for the entire schedule), and drawing
further edges from 3 other cones to this D0, we can enforce 3 sepa-
rate communication steps, each of them sending a value to c (D0),
that are unavoidable in any valid schedule. As such, a schedule
will need to optimize the cones very carefully to ensure that one
of these 3 values is already available every time when we need to
communicate in the DAG. This essentially allows us to ensure that
the communication steps can only happen at a given point in time
at the earliest.

On the other hand, adding a path of length =
% to the construction

ensures that one of the processors has to compute the next node of
this path in every time step. We then attach further predecessors
to specific nodes of this path, hence it becomes necessary to split
the work between multiple processors to ensure that the 8-th node
of the path is indeed always computed by the 8-th time step. This
essentially allows us to ensure that communications must happen
at a given point in time at the latest.

The two methods together define the exact time steps when we
need to communicate, otherwise we exceed the allowed cost�0. In
this setting, we show that there is essentially only one way to de-
velop a valid schedule for our construction. The underlying reduc-
tion then uses the 3-partition problem with specific gadgets repre-
senting each input number 08 , and ensures that it is only possible
to compute the required nodes by each communication deadline if
the numbers 08 are sorted into triplets that each sum up to a given
value. �

We note that Theorems 6.1–6.3 apply to any of the BSP commu-
nication models in Table 3.

7 PROBLEM WITHIN A PROBLEM:
COMMUNICATION SCHEDULING

Sinceℎ-relations are a relatively complex communication cost func-
tion in the BSPmodel, it is natural to wonder if the hardness of BSP
scheduling lies only within the assignment of nodes to processors
and steps (as in simpler models), or if the scheduling of commu-
nication steps also adds another layer of complexity to this. More
specifically, assume that the nodes are already assigned to proces-
sors and supersteps, but we still need to decide when the values are
communicated between the chosen processors; is this subproblem
easier to solve?

Definition 7.1. In the communication scheduling (CS) problem,
we assume that we are given a fixed c and g , and we need to find a
communication schedule Γ that minimizes the resulting BSP cost.

We implicitly assume that c and g are chosen such that there
exists a feasible communication schedule, i.e. for all (D, E) ∈ �, we
have g (D) ≤ g (E) if c (D) = c (E), and g (D) < g (E) if c (D) ≠ c (E).

As a heuristic approach, one might consider an eager or lazy
communication policy: if some data is computed on processor ?1
in superstep B1 and required on processor ?2 in superstep B2 , then
we can always send this data immediately in superstep B1 (eager),

?2, B =1

?1, B =1

?2, B =2

?1, B =2

?2, B =3

?1, B =3

?2, B =4

?1, B =4

... ... ... ... ... ...

... ... ... ... ... ...

Figure 5: Illustration of the communication scheduling

problem: both eager and lazy scheduling are suboptimal.

Only a few nodes are shown in each superstep.

or always send it at the latest possible point in superstep (B2− 1)
only (lazy). However, both of these schedules might be subopti-
mal. Consider the example in Figure 5, where most of the commu-
nicated values are immediately needed in the next superstep: ?1
must send a value to ?2 in supersteps 1, 2 and 3, and ?2 must send
a value to ?1 in supersteps 1 and 3. However, there is a further
value computed by ?2 in B = 1, but only needed by ?1 inB = 4; we
can decide whether to send this value in superstep 1, 2 or 3. The
eager and lazy policies send this value in superstep 1 and 3, respec-
tively; however, these both increase the cost of the given ℎ-relation,
as ?2 is already sending a value in these supersteps. In contrast to
this, sending it in superstep 2 comes at no further cost.

This shows that communication scheduling is indeed an inter-
esting problem on its own. From a theoretical perspective, it is im-
portant to understand if the ℎ-relation-based communication cost
is, intuitively speaking, complex enough to already make the CS
problem NP-hard. From a practical perspective, if CS turns out to
be significantly easier to solve, then scheduling heuristics might
prefer to first find a good initial BSP schedule for a DAG, and then
try to further improve this by fixing the selected c and g , and try-
ing to further reduce the communication cost separately.

Firstly, for the simplest case of only % = 2 processors, it turns
out that a relatively simple greedy method is already guaranteed
to find the optimal solution (in any of the communication models
of Table 3, since these are all equivalent for % = 2).

Lemma 7.2. The communication schedulingproblem can be solved

in polynomial time for % = 2 processors.

Interestingly, for general % , it turns out that the properties of
the CS problem can heavily depend on the communication model.
In particular, we prove that CS is already NP-hard if communica-
tion happens according to the DB, FS or FB models. However, the
same proof strategy does not work in case of the DS model; we
leave it as an open question to future work whether communica-
tion scheduling is also NP-hard in DS.

Theorem7.3. The communication schedulingproblem isNP-hard

in the DB, FS and FB models.

Proof sketch. The proof uses a reduction from the 3D-matching
problem: given three sets - , . , / of size # , and a set of" triplets
from - × . × / , we need to select # triplets that are disjoint, i.e.
cover all elements of- ,. and / exactly once. We convert this into
a CS problem where each triplet is represented by a value which
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needs to be sent from ?0 to several other processors, with the con-
crete deadlines depending on the elements of - , . , / contained in
the given triplet. The construction consists of two parts. The first
part essentially allows us to send exactly (" − # ) values from ?0
to all other processors (the triplets that are not among the chosen
# ) within the allowed cost. The second part then allows us to send
# further values from ?0 to the other processors, but only if the
corresponding triplets are disjoint.

Intuitively, this constructionworks in the DB, FS and FB models
because sending a value from ?1 to ?2 and from ?1 to ?3 are not
independent operations: in case of broadcast, the value sent from
?1 can be directly received by both ?2 and ?3 at the same time,
whereas in case of free data movement, ?1 can send a single value
to an auxiliary processor ?0 , which relays this to both ?2 and ?3.
This property is crucial for the first part of the construction to en-
sure that ?0 is indeed distributing the same (" − # ) values to all
the other processors. In contrast to this, in the DS model, the com-
munication steps from ?1 to ?2 and the communication steps from
?1 to ?3 are essentially independent from each other, and hence the
same proof strategy cannot be applied. �

On the other hand, if we consider themodel extension with com-
munication weights, then it becomes relatively simple to reduce it
to standard packing problems, and hence show that the problem is
NP-hard already for % = 2 processors.

Lemma 7.4. If we have communication weights, the communica-

tion scheduling problem is already NP-hard for % = 2.

8 FORMULATION AS AN ILP PROBLEM

Finally, we briefly analyze the formulations of our BSP scheduling
task as an Integer Linear Programming problem. Since today’s ILP
solvers can often solve even relatively large instances in reason-
able time, a reduction to ILP is a simple and yet effective approach
for various kinds of combinatorial problems: if we formulate our
problem as a reasonable-sized ILP, then ILP solvers can be used as
black box to obtain optimal or near-optimal solutions. Such an ILP-
based approach has provided remarkable results in several other
areas, e.g. hypergraph partitioning [19].

In this section, we present a straightforward approach to for-
mulate our BSP scheduling problem as an ILP, and we analyze the
number of variables and constraints this formulation requires in
the different communication models. We emphasize that the ILP
formulation presented here is by nomeans optimal; a detailed anal-
ysis could probably make further improvements to this formula-
tion, both in terms of size and in suitability for practical solvers.
However, we believe that this simple and natural formulation pro-
vides valuable insight, both by demonstrating the easy applicabil-
ity of the ILP approach, and by providing an alternative compari-
son method between the different models.

Proposition 8.1. BSP scheduling can be formulated as an ILP

problem on $ (= · % · () variables in the DS, DB and FB models, and

on $ (= · %2 · () variables in the FS model.

Proof sketch. The main idea is similar in all of the models: we
introduce two binary variables compE,?,B and presE,?,B for all E ∈ + ,
? ∈ [%], B ∈ [(]. The variable compE,?,B indicates whether the

value E is computed on processor ? in superstep B , while presE,?,B
indicates whether the output value of E is already present on pro-
cessor ? at the end of the computational phase of superstep B . These
variables already allow us to express the work costs�F>A:

(B,?) on
each processor by a simple summation, and then �F>A:

(B) by tak-
ing the maximum of these (i.e. adding �F>A:

(B) ≥ �F>A:
(B,?) as a

constraint for all ?).
The remaining variables are used to describe the communication-

related costs and constraints. Regardless of the model, the commu-
nication cost can be described by a simple implementation of the
variables �B4=C , �A42 and �2><< ; the only difference between the
models is how we capture the actual communication steps.

• In broadcast models (DB and FB), we can simply add binary
variables sentE,?,B and recE,?,B to indicate if processor ? has
sent or received, respectively, value E in superstep B . The linear
constraints then need to ensure that if recE,?1,B = 1, then we
have sendE,?2,B = 1 for some other ?2, i.e. some processor is
actually broadcasting the value that is received by ?1.

• In the FS model, we need to add binary variables commE,?1,?2,B

to indicate the concrete data transfer, i.e. whether value E is
being sent from processor ?1 to processor ?2 in superstep B ;
this is why the required number of variables is$ (= · %2 · () in
this case. The validity of the send operations here can simply
be checked using the presence variables presE,?,B .

• Finally, in the DS model, the straightforward solution would
also use the variables commE,?1,?2,B as in FS. However, here
if node E is computed on processor ? , then only processor ?
can send this value; with this observation and some auxiliary
variables, we can also model this case with$ (= ·% ·() variables,
similarly to the approach in DB and FB.

The correct interpretation of the presence variables presE,?,B

can also be ensured with a simple constraint: value E is present on
processor ? in superstep B if it was already present before, if it was
computed in this superstep, or if it was received in the previous
superstep, i.e.

presE,?,B ≤ presE,?,(B−1) + compE,?,B + recE,?,(B−1)

in the broadcast models, for example. Finally, the precedence con-
straints in the DAG can also be implemented through the presence
variables: if (D, E) ∈ �, then we need compE,?,B ≤ presD,?,B .

The entire set of variables and linear constraints for each model
is discussed in Appendix E. The number of linear constraints re-
quired is altogether $ ((=+ |� |) ·% ·() in the DS, DB and FB models,
and $ ((= ·% + |� |) · % ·() in the FS model. �

We point out that it is also straightforward to extend the above
ILP formulation with node weights (for both work and communi-
cation), or to the case when duplication is allowed.

While the number of variables in this formulation seems rather
large, it may not be prohibitive in practicewithmodern ILP solvers,
especially for smaller DAGs. In particular, several ILP representa-
tions with a similar magnitude of variables have been suggested
and analyzed in previous work for classical scheduling problems;
see Appendix E for a brief overview of these. Moreover, the vast
majority of variables in our formulation are binary, which can also
make the solving process more efficient in practice.
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A DETAILED DEFINITION OF DIFFERENT
MODEL VARIANTS

We first give a more formal definition of the numerous scheduling
models that were analyzed (or only briefly mentioned) in the pa-
per. Note that besides BSP, the simplest scheduling models from
the literature (classical scheduling and commdelay) were already
defined in Section 4.1.

We begin with the alternative communication models within
BSP (the DB, FS and FB models), since these play a central role in
our theoretical results in Sections 7 and 8. We then continue with
the remaining models that are only loosely related to BSP.

A.1 DB, FS and FB models

To define the BSP scheduling problem with broadcast communica-
tion (and hence switch from our initial definition of the DS model
to DB), we need to redefine the send cost �B4=C (B,?) as

�B4=C
(B,?)

= |{E ∈ + | ∃ ? ′ ∈ [%] such that (E, ?, ? ′, B) ∈ Γ}| ,

while the rest of the definitions remain unchanged.
To allow free movement of data (switch from the DS model

to FS), we need to introduce auxiliary variables similarly to the
presE,?,B variables in the ILP formulation; to avoid confusion, we
develop a different notation for these in this context, referring to
them as ` (E, ?, B). Formally, we let the auxiliary variable ` (E, ?, B) ∈
{0, 1} indicate whether the output of E is already present on pro-
cessor ? at the end of the computational phase of superstep B ; that
is, we have ` (E, ?, B) = 1 if either c (E) = ? and g (E) ≤ B , or if
there is a (E, ? ′?, B ′) ∈ Γ with B ′ < B . In the validity conditions
of Section 3.1.2, Condition (i) will now require for all (D, E) ∈ �

to have ` (D, c (E), g (E)) = 1, and Condition (ii) will state that if
(E, ?1, ?2, B) ∈ Γ, then we must have ` (E, ?1, B) = 1.

Note that the modified definition for broadcasting and for free
data movement can be combined in a straightforward way to ob-
tain the definition of the FB model, since the corresponding modi-
fications affect different aspects of the model definition anyway.

A.2 Single-port duplex model

The SPD model has been studied in the work of [36]; we slightly
change this definition to adapt it to node-based communication.

Similarly to commdelay, an SPD schedule has a constant param-
eter 6, and consists of an assignment c : + → [%] and C : + → Z+,
but also a communication schedule Γ ⊂ + × [%] × [%] ×Z+ , where
(E, ?1, ?2, C0) ∈ Γ describes that value E is sent from ?1 to ?2 at
time step C0. These communication steps in Γ must satisfy two
conditions for validity: the values that are sent must already be
computed (i.e. if (E, ?1, ?2, C0) ∈ Γ then C (E) ≤ C0), and each proces-
sor can only send and receive a single value at a given time (i.e. if
(E1, ?1,1, ?2,1, C1), (E2, ?1,2, ?2,2, C2) ∈ Γ and the intervals (C1, C1+6]
and (C2, C2 +6] are not disjoint, then we must have ?1,1 ≠ ?1,2 and
?2,1 ≠ ?2,2).

For a correct SPD schedule, we still require that a processor only
computes a single node at a time (�D, E ∈ + with c (D) = c (E),
C (D) = C (E)). For all (D, E) ∈ �, if c (D) = c (E), then we still need
to have C (D) < C (E). For edges (D, E) ∈ � with c (D) ≠ c (E), we
require that there is a (D, c (D), c (E), C0) ∈ Γ with C0 + 6 < C (E). As
before, the cost of a schedule is simply its makespanmaxE∈+ C (E).

A.3 MaxBSP

As discussed in Section 4, the reasonable interpretation of maxBSP
to DAG scheduling is to assume that every superstep contains a
simultaneous computation and communication phase. To achieve
this, we only need minor modifications in the original BSP defi-
nition. In particular, in validity condition (ii), we need to require
that if (E, ?1, ?2, B) ∈ Γ, then besides ?1 = c (E), we must have
g (E) < B with strict inequality, since the communication phase of B
now overlaps with its computation phase. Besides this, we simply
need to adjust the cost of a superstep. One possible choice for this
is

� (B) = max

(
�F>A:

(B) , 6 ·�2><<
(B) + !

)
,

but as a natural alternative, we could also have

� (B) = max

(
�F>A:

(B) , 6 ·�2><<
(B)

)
+ ! .

A.4 The U − V model and subset-BSP

The third cell in the last column of Table 2 can be interpreted in sev-
eral different ways for DAG scheduling; below we discuss two of
these. The main difference between these two variants is whether
they require subset synchronization between the nodes that are cur-
rently communicating, similarly to how BSP requires it between
all processors. That is, one natural interpretation of this setting is
what we call subset-BSP, where the schedule is still divided into
computation and communication phases, just like BSP, but the dif-
ferent processors can decide to do these communication phases at
separate points in time: each such communication phase can hap-
pen only between a given subset of processors, while the rest of the
processors keep computing in the meantime. The other natural in-
terpretation is closer to the spirit of the U − V model (with U = 0),
where no synchronization is required at all; in other words, this is
essentially identical to the SPD model, with the minor difference
that while communicating, a processor is unable to compute.

To demonstrate the difference between these two models, as-
sume for instance that ?1 computes a value E1 in time step C0, and
wants to send this to ?2 in the time interval (C0, C0 + 6], while ?3
computes another value E2 in time step C0 + 1, and wants to send
this to ?1 in the time interval (C0 + 1, C0 + 6 + 1]. This does not
violate any condition in the U − V model, but it is not allowed in
subset-BSP, since ?3 is not yet finished with the computation of E2
at C0, so it cannot begin a communication phase together with ?1
at this point.

We first begin with the definition of the U−V model, since this is
surprisingly simple. We can simply take the definition of the SPD
model, and extend it with a simple further condition on validity: if
there is a communication step (D, ?1, ?2, C0) ∈ Γ, then we cannot
have any E ∈ + such that c (E) ∈ {?1, ?2} and C0 < g (E) ≤ C0 + 6.
We once again point out that since theU−V model ismostly used as
a cost function and not a complete model in the related work, this
is just one possible interpretation of it; some other works assume
e.g. that a processor is not even allowed to send and receive at the
same time, which would make this setting significantly different
from all other models in our taxonomy.

On the other hand, formally defining the subset-BSP schedul-
ing model much more technical. For convenience, we modify the
definition of supersteps for this, and assume that each superstep
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on a processor only contains computations. The communication
phases are defined separately as a set {Z1, Z2, ...}, where each Z8 is
a 4-tuple (Γ, %0, CB , C5 ), with Γ being a set of communication steps
as before, %0 ⊆ [%] is a subset of processors of size |%0 | ≥ 2, and
CB , C5 ∈ N are integers denoting the starting and finishing time of
the communication phase, respectively. The set Γ now only con-
sists of 3-tuples (E, ?1, ?2) ∈ + × [%] × [%], and these must satisfy
?1, ?2 ∈ %0. The communication cost of Z8 is defined as the cost of
the communication phase before: �2><<

(Z8 ,?) is the maximum of
�B4=C

(Z8 ,?) and �A42 (Z8 ,?) , and �2><<
(Z8 ) is the maximum of these

values, with ? restricted to the processors in %0. The starting and
finishing times must satisfy CB +�2><<

(Z )
= C5 .

We also need to establish the starting and ending times of the
computational phases (supersteps) with functions C ′B , C

′
5

: [%] ×

[(] → N; these must satisfy C ′
5
(?, B) = C ′B (?, B) + �F>A:

(B,?) . Fur-

thermore, the supersteps need to be ordered correctly (C ′B (?, B) ≥
C ′
5
(?, B ′) for B ′ < B), and disjoint from the communication phases

containing ? (if Z8 has ? ∈ %0, then for all B either C ′
5
(?, B) ≤ CB or

C ′B (?, B) ≥ C5 for the CB , C5 in Z8 ). Note that if the desired number of
computation phases is different for different processors, then we
can simply add supersteps of length 0 for some processors at the
end of their schedule.

The validity conditions in this model are as follows. For condi-
tion (i), in case of c (D) ≠ c (E), we must now require that there
exists a Z8 = (Γ, %0, CB , C5 ) such that (D, c (D), c (E)) ∈ Γ and C5 ≤

C ′B (c (E), g (E)). For condition (ii), we need for each Z8 = (Γ, %0, CB , C5 )
and (E, ?1, ?2) ∈ Γ to have ?1 = c (E) and C ′

5
(?1, g (E)) ≤ CB . Finally,

the cost of a schedule can be defined as

max

(
max
? ∈[% ]

C ′
5
(?, () , max

Z8
C5

)
.

We also note that subset-BSP can easily be extended with a la-
tency cost at each subset synchronization. On the other hand, there
is no straightforward way to do the same in the U − V model.

A.5 Commdelay model variants

While the different variants of the commdelaymodel (in themiddle
column of Table 2) are further away from the main focus of the pa-
per, we briefly show how these can be defined in a straightforward
way. These 4 commdelay variants are indeed different from each
other, and hence the properties on the vertical axis of the table
(simultaneous computation and communication, and barrier syn-
chronization) also have a significant effect in this simplified model
where data volume is not measured.

To define the different commdelay variants, it is easier to specif-
ically include the communication steps in the schedule; that is, just
like in SPD, the schedule again contains a Γ ⊂ + × [%] × [%] × Z+,
where (E, ?1, ?2, C0) ∈ Γ indicates that E is sent from ?1 to ?2
in the interval (C0, C0 + 6]. The standard commdelay model can
of course also be redefined this way; we must require that any
(E, ?1, ?2, C0) ∈ Γmust have C (E) ≤ C0, and for edges (D, E) ∈ �with
c (D) ≠ c (E), we need a (D, c (D), c (E), C0) ∈ Γ with C0 + 6 < C (E).
In contrast to SPD, there is no condition requiring that the com-
munication time intervals on a processor cannot intersect. One

can observe that this definition is indeed equivalent to the orig-
inal commdelay model if we construct Γ by adding the 4-tuple
(D, c (D), c (E), C (D)) ∈ Γ for each (D, E) ∈ � with c (D) ≠ c (E).

To define a commdelay model with sync points, we essentially
assume that the start of each communication step requires a bar-
rier synchronization between all processors; this essentially means
that no processors can be in the middle of a computation or a com-
munication step at this point. If each computation has a unit work
weight, then every integer time C0 is naturally a point where no
computation is happening currently; as such, for commdelay with
sync points, we only need to ensure that no processor is in the mid-
dle of a communication step when another communication begins.
Formally, this means adding the following condition to our sched-
ule: for any two (E1, ?1,1, ?2,1, C1), (E2, ?1,2, ?2,2, C2) ∈ Γ, we must
have either C1 ≤ C2 or C1 ≥ C2 + 6.

The commdelay model with phases, which has already been
studied in [9], is essentially identical to BSP, but every commu-
nication phase lasts for exactly 6 time units; as such, its definition
can indeed be obtained from BSP by setting �2><<

(B)
= 6 for any

superstep. One can also add a latency ! to this model, but this es-
sentially only creates a new delay parameter 6′ = 6 + !. Alterna-
tively, the model can be defined by starting from commdelay with
sync points, and further requiring that if (E, ?1, ?2, C0) ∈ Γ, then
for all E ∈ + we have C (E) ≤ C0 or C (E) > C0 + 6.

In case of the third column of the table we once again have two
possible interpretations, similarly to those discussed in Section A.4.
If no synchronization is required at all, then we can get a commde-
lay model with “timeouts”, i.e. where a processor has to stop com-
puting while it sends/receives. This is essentially again the U − V

model, but now with V = 0; we can define this by starting from
commdelay, and adding the condition that if (D, ?1, ?2, C0) ∈ Γ,
then we cannot have a E ∈ + such that c (E) ∈ {?1, ?2} and
C0 < g (E) ≤ C0+6. On the other hand, if we require subset synchro-
nization between the communicating nodes, we can also define a
subset-commdelay model analogously to subset-BSP by changing
the communication costs to �2><<

(Z8 ) = 6 in subset-BSP.

A.6 Edge-based communication

We also provide a definition of BSP scheduling model with edge-
based communication for completeness. Recall that this BSP vari-
ant usually provides a less realistic model of communication costs,
because it might require us to transfer the same output value from
?1 to ?2 multiple times.

In this edge-based model, the communication steps Γ are de-
fined as a set of pairs ((D, E), B) ∈ � × [(] (instead of 4-tuples),
indicating that the data corresponding to edge (D, E) is transferred
from c (D) to c (E) in the communication phase of superstep B . In
case of c (D) ≠ c (E), validity condition (i) of the BSP schedule will
now state that wemust have ((D, E), B) ∈ Γ for some B < g (E). Valid-
ity condition (ii) is also changed accordingly: if ((D, E), B) ∈ Γ, then
we need to have g (D) ≤ B . Finally, the definition of communication
costs is modified as follows:

�B4=C
(B,?)

= |{((D, E), B1) ∈ Γ | g (D) = ?, B1 = B}| ,

�A42
(B,?)

= |{((D, E), B1) ∈ Γ | g (E) = ?, B1 = B}| ,
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B PROOFS FOR SECTION 4

This section provides a detailed discussion of our claims regarding
the relations between the different models in the taxonomy.

B.1 Lemma 4.1

We first discuss Lemma 4.1, i.e. that the ℎ-relations indeed capture
the same cost as the SPD model, at least in the unweighted case.
In other words, assume that for each pair of processors ? ≠ ? ′, we
have Λ(?, ? ′) values (all available at time C ) that we need to send
from ? to ? ′. Naturally, Λ(?, ?) = 0 for all ? ∈ [%]. We show that
we can communicate all these values by the time C + 6 ·�2><<

(B)

according to the rules of the SPD model, where

�2><<
(B)

= max
?,?′∈[% ]

Λ(?, ? ′)

as in the definition of BSP.

Proof of Lemma 4.1. Consider a bipartite multigraph on % + %
nodes D1, ..., D% and E1, ..., E% , where for each ?, ? ′ ∈ [%], we draw
Λ(?, ? ′) distinct edges from D? to E?′ . Until there is a node which

has degree less than �2><<
(B) , we can select an arbitrary such

node in both {D1, ..., D% } and {E1, ..., E% }, and add an edge between
them (we will call this an “artificial” edge). After several such steps,
the graph becomes �2><<

(B) -regular.
It is known that such a regular bipartite graph can be decom-

posed into�2><<
(B) perfectmatchings. In particular, the condition

of Hall’s theorem is always satisfied for regular graphs, so there ex-
ists a perfect matching; if we remove these edges, the remaining
graph is again regular. The fact that our graph is a multigraph does
not affect this method at all, since a multiplicity of a given edge
contributes the same number of edges to a subset * ⊆ {D1, ..., D% }
and its neighborhood when applying Hall’s theorem.

These perfect matchings naturally divide the communications
into�2><<

(B) consecutive roundswhere every processor only sends
and receives a single value in each round. As such, we can transfer
the values corresponding to the first matching in the time interval
(0, 6], the values in the second matching in the interval (6, 2 · 6],
and so on. When an edge from D?1

to E?2
is artificial, then ?1 sim-

ply sends no value to ?2 in that round. �

The same claim does not hold however in case of communica-
tion weights. Consider the case when Λ(?1, ?2) = Λ(?2, ?3) =

Λ(?3, ?1) = 3, each of these induced by a single value of commu-
nication weightF2><< = 3, and we furthermore have a processor
?4 that needs to send a single value of communication weight 1 to
all of ?1, ?2 and ?3. The cost of theℎ-relation here is�2><<

(B)
= 4,

since ?1, ?2 and ?3 receive 4 units of data in total. However, we are
unable to schedule this into the slots (0, 6], (6, 26], (26, 36], (36, 46]
in the SPD model: the values sent between ?1, ?2 and ?3 each oc-
cupy a continuous interval of length 36, so each of ?1, ?2 and ?3
can only receive values from ?4 either in (0, 6] or in (36, 46]. How-
ever, ?4 has to send a value to all three processors, which is not
possible in these two intervals.

In case of communication weights, the same equivalence would
only hold if the communication steps are preemptive, i.e. we can
split F2><< (E) into smaller integer-sized data units; in this case,

we could apply the same technique as in the unweighted case. How-
ever, the study of this preemptive case is beyond the scope of this
paper.

B.2 Lemma 4.3

The upper bounds in Lemma 4.3 are straightforward to show; in
particular, the factor % in each of them follows directly from Propo-
sition 4.2. As for the upper bound of a factor (1 + 6), consider a
schedule (c, C) in the classical model, and assume that after each
step, we keep all the processors idle for 6 time steps and communi-
cate every value computed in the given time step to all other pro-
cessors. In other words, the consider the timing C ′(E) = (1 + 6) · C
for all E ∈ + ; this is a valid schedule of the same DAG in the com-
mdelay model, and its makespan is at most a factor (1 + 6) larger.

For thematching lower bounds, consider a layered DAGof length
ℓ and width : , i.e. a DAG consisting of = = : · ℓ nodes indexed E8, 9
for 8 ∈ [ℓ], 9 ∈ [:], such that every node in the 8-th layer has an
edge to every node in the (8 + 1)-th layer, i.e. (E8, 91, E (8+1), 92 ) ∈ �

for all 8 ∈ [ℓ − 1] and 91, 92 ∈ [:]. With % = : processors, we have
OPT2;0BB = ℓ in this DAG, since computation can be parallelized
completely. However, in the commdelay model, we have to wait
6 time units between each consecutive pair of layers unless both
layers are entirely computed on the same processor. As such, if
% ≤ (1+6), then the optimal strategy is to execute the entire DAG
on a single processor, resulting in a makespan of % · ℓ . If % > (1+6),
then it is indeed better to wait for 6 time units, which gives an exe-
cution time of (ℓ−1) · (1+6) +1 (since we do not have to wait after
the last layer). In the first case, we get a ratio of % exactly, whereas
in the second case, we get a ratio of

(ℓ − 1)(1 + 6) + 1

ℓ
= (1 + 6) −

6

ℓ

which is larger than (1 + 6) − Y for any Y > 0 if ℓ is large enough.
For the lower bound for classical scheduling and BSP, we can

even achieve the factor % lower bound when (1 + 6) < % . For this,
let us add even more edges to the construction above, such that
(E81, 91 , E82, 92 ) ∈ � for all 81, 82 ∈ [ℓ], 81 < 82 and 91, 92 ∈ [:]. Here
it is intuitively even more clear that the optimum solution uses a
single processor only. In particular, if two nodes anywhere in the
layers ℓ

2
+ 1, ..., ℓ are assigned to different processors, then one of

these processors must receive at least 1

4
· ℓ · % values altogether

from the first half of the DAG, resulting in a communication cost
of 1

4
· ℓ · % · 6; this is already larger than ℓ · % if 6 ≥ 4. As such,

the second half of the DAG must be assigned to a single processor
?1. Assume that there is a solution with cost below ℓ · % that also
uses another processor besides ?1; we will even further reduce the
communication cost of this solution by disregarding every com-
munication cost in our analysis except the values received by ?1.
We can iterate through the nodes that are assigned to a different
processor than ?1 (from layer ℓ

2
to layer 1), and reassign them one-

by-one to ?1; each such step may increase computation cost by 1,
but decreases communication cost by 6, so it decreases the cost
in total. After at most ℓ

2
· % steps, everything is scheduled in ?1;

however, this solution has cost ℓ · % , which is a contradiction.
Finally, for a lower bound for the case of commdelay and BSP,

consider again a layered DAG of length ℓ and width % , but now
with layer 8 only having edges to the nodes in layers {8+6+1, ..., ℓ},
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i.e. we have (E81, 91 , E82, 92 ) ∈ � for all 81, 82 ∈ [ℓ], 81 + 6 < 82 and
91, 92 ∈ [:]. In the commdelay model, since all values are available
on all processors after 6 time units, we can parallelize each layer
of this DAG perfectly and achieve a total cost of ℓ . In case of BSP,
however, we can apply the same proof as above to show that there
is again no better schedule than computing all nodes on a single
processor ?1, at a cost of % · ℓ . This again amounts to a factor %
difference.

We note that the same lower bound construction techniques
should also work if we replace the BSP model by SPD; however,
in this case, it becomes more technical to prove that an SPD sched-
ule of lower cost does not exist.

B.3 Theorem 4.4

We now present the proof of Theorem 4.4. We note that the same
upper bound proof and lower bound construction techniques can
be used to show the same relations between the different commde-
lay model variants (middle column of Table 2).

B.3.1 Upper bound. We begin by showing the upper bound part
of Theorem 4.4. Consider an SPD schedule of makespan C<0G on a
given DAG; we show how to turns this into a BSP schedule of cost
at most 2·C<0G , hence provingOPT�(% ≤ 2·OPT(%� . The remain-
ing upper bounds follow from this, since all the optimum costs are
at most as large as OPT�(% and at least as large as OPT(%� .

Assume we have a DAG and an SPD schedule of this DAG; then
let us divide this to time intervals of length 6, i.e. (0, 6], (6, 26], ...,
up to (C<0G − 6, C<0G ] (the last interval may be shorter if C<0G is
not divisible by 6). We turn each such interval (C0, C0 + 6] into a
separate superstep B in our BSP schedule. In this superstep B , the
computational phase on processor ? executes the same nodes E
that have g (E) = ? and C (E) ∈ (C0, C0 + 6] in our SPD schedule;
since there are at most 6 such nodes, we will have �F>A:

(B) ≤ 6.
The communication phase of superstep B , on the other hand, will
send all the communication steps (E, ?1, ?2, C ′) ∈ Γ that have C0 ≤
C ′ < C0 + 6; since the sending and receiving intervals in SPD have
length 6 and are disjoint, this means that each processor can only
send and only receive a single value in superstep B . As such, we
have �2><<

(B) ≤ 1, and hence � (B) ≤ 2 · 6. This means that the
total cost of the BSP schedule is indeed at most

C<0G

6
· 2 · 6 = 2 · C<0G .

We note that if the last interval has length smaller than 6, then
it results in a computational phase with cost equal to the length
of the interval, and an empty communication phase, since we can-
not begin transmitting any more values at this point. As such, the
corresponding SPD and BSP costs are equal for this interval.

B.3.2 Lower bound of (2−Y). Let us now analyze the lower bound
for the model pairs (OPT(%� ≤ OPTV ) , (OPT(%� ≤ OPT�(% ),
(OPT<�(% ≤ OPT�(% ) and (OPT<�(% ≤ OPTV ). For these
cases, it suffices to develop aDAG constructionwhere computation
and communication can be completely parallelized in the models
where this is permitted.

Assume % > 2, and consider another parameter : , and let ℓ =

: · 6. Let us construct a layered DAG consisting of = = % · (ℓ + 1)
nodes indexed E8, 9 for 8 ∈ {0} ∪ [ℓ], 9 ∈ [%], having the edges

(E (8−1), 9 , E8, 9 ) ∈ � for all 8 ∈ [ℓ], 9 ∈ [%], as well as the edges

(E (8−1) ·6), 9 , E8 ·6+1, ( ( 9+1) mod % ) ) ∈ �

for all 8 ∈ [:], 9 ∈ [%], where we now understand the modulo
operation to return a remainder from the set [%] for simplicity.

The DAG above can be scheduled with a cost of (ℓ + 1) in any
of the models that allow simultaneous computation and communi-
cation, i.e. in the SPD and maxBSP models. More specifically, for
all ? ∈ [%], we can assign all the nodes E8,? to processor ? , and in
the SPD model, assign each node E8, 9 to time step C (E8, 9 ) = 8 + 1,
whereas in the maxBSP model, assign nodes E0, 9 to superstep 1,
and all other nodes E8, 9 with 8 ∈ {(B−2) ·6+1, ..., (B−1) ·6} to super-
step B for B ∈ {2, ..., : + 1}. This ensures that each processor ? can
keep computing the given nodes E8,? in order without any interrup-
tion. In SPD, the value of (E (8−1) ·6,9 ) is transferred from processor
9 to processor (( 9+1) mod %) in the interval ((8−1)·6+1, 8 ·6+1] for
all 8 ∈ [:], 9 ∈ [%], and in maxBSP, the same value is transferred
in the communication phase of superstep B = 8 + 1.

On the other hand, consider the models that do not allow simul-
taneous computation and communication: BSP, (U−V) with U = 0,
or subset-BSP. In these models, the optimum solution is to once
again assign all the nodes E8,? to processor ? , but now before ev-
ery node E8 ·6,? , we need to allocate 6 time units to communicate
the values between the processors. As such the optimum cost in
this case is (1+2 ·6 ·:), hence the ratio between the two optima is

1 + 2 · 6 · :

1 + 6 · :
,

which is indeed arbitrary close to 2 for : large enough.

B.3.3 Lower bound of ( 3
2
− Y). The lower bound construction for

the model pairs (OPT(%� ≤ OPT<�(% ) , (OPTV ≤OPT�(% ) and
(OPTV ≤OPT<�(% ) is slightly more technical. We first outline the
main idea. Our DAG will consist of6 distinct layered subDAGs; we
will number these by : ∈ [6]. Each of the components can individ-
ually be scheduled with a cost of 2 ·6+1; however, for this, the :-th
component needs to execute computations in times steps {1, ..., :},
then a communication for 6 time units, and then again computa-
tions for the time steps {6 +: + 1, ..., 2 ·6 + 1}. That is, the first sub-
DAG requires communications in the time interval (1, 6 + 1], the
second one in the time interval (2, 6 + 2], and so on, until (6, 2 ·6].
However, this is not possible with barrier synchronization; if syn-
chronization is required, the best we can do is as follows: (i) exe-
cute the computation steps before the required communication on
all processors, in time 6, then (ii) execute all the communications
together for another 6 time units, and finally (iii) compute all the
post-communication nodes in another 6 time units. This results in
a cost of 3 · 6, and hence a ratio of

3 · 6

2 · 6 + 1
,

which is arbitrarily close to 3

2
in an example where the parameter

6 is large enough.
Let us introduce a parameter :0 which will be the width of each

component. Each component consists of :0 · (6 +1) nodes indexed
E8, 9 for 8 ∈ {0}∪[6], 9 ∈ [:0]. We add the edges (E (8−1), 9 , E8, 9 ) ∈ �
for all 8 ∈ [6], 9 ∈ [:0], as well as the edges

(E:,9 , E:+6+1, ( ( 9+1) mod :0) ) ∈ �

15



Pál András Papp, Georg Anegg, and A. N. Yzelman

in the:-th component for all 9 ∈ [:0], where themodulo operation
once again returns a remainder from the set [:0]. Finally, we select
% = : · :0, i.e. there is a sufficient number of processors to assign
a separate processor ? to the values E8, 9 in every component for
every fixed 9 ∈ [:0].

This DAG can be scheduled at a cost of 2 · 6 + 1 in the SPD, the
U − V with U = 0 and subset-BSP models, as described above: in
the :-th component, we can execute the computations E1, 9 , ..., E:,9
in the time steps {1, ..., :}, then communicate the necessary values
for 6 time units, and then again compute E:+1, 9 , ..., E6+1, 9 in time
steps {6 + : + 1, ..., 2 · 6 + 1}.

On the other hand, in the models with barrier synchronization,
we need to wait for the computations E1, 9 , ..., E:,9 to finish in all

components before starting a new phase/superstep (in BSP/maxBSP,
respectively), then execute all communications simultaneously, and
then execute the remaining computations in a following phase /
superstep. This results in a total cost of 3 · 6. Note that the abil-
ity to execute computations and communications simultaneously
in maxBSP does not offer any benefit in this DAG, since each of
the nodes E:+1, 9 require a communication step. Alternatively, in
maxBSP, it can also be optimal to have two separate communica-
tion phases: for some : ∈ [6], we organize a separate commu-
nication phase for the components {1, ..., :} in the time interval
(:;: +6], and then another one for the components {: +1, ..., 6} in
the interval (: +6;: +2 ·6]. However, this again requires an initial
superstep with : computations in component : and a final super-
step with (6 − :) computations in component (: + 1), and hence
it also has a cost of 3 · 6. Finally, another possible solution would
be to reduce the number of processors used (per component) in
order to avoid communication. However, if we select :0 ≥ 3, then
computing each component on a single processor already becomes
suboptimal, and if we use at least 2 processors, then at least one
communication step is already required within each component.

B.4 Propositions 4.5 and 4.6

The proofs of Propositions 4.5 and 4.6 were already outlined in
Section 4; we only discuss them here in slightly more detail.

When referring to the classical scheduling model with work
weights, we assume that a schedule must fulfill slightly different
properties: we need to have �D, E ∈ + with c (D) = c (E) such that
the intervals (C (D), C (D) + FF>A: (D)] and (C (E), C (E) + FF>A: (E)]
intersect, and ∀(D,E) ∈ � we need to have C (D) + FF>A: (D) ≤
C (E). The makespan in this case is understood as maxE∈+ C (E) +
FF>A: (E). If we add barrier synchronization to this, we require that
for each (D, E) ∈ � with c (D) ≠ c (E) there exists a possible syn-
chronization point C0 within the interval [C (D) + FF>A: (D), C (E)]
such that � E0 ∈ + with C0 ∈ (C (E0), C (E0) + FF>A: (E0)], i.e. no
processor is computing at time C0.

B.4.1 Proposition 4.5. This construction is already outlined in Fig-
ure 3a; let us refer to the bottom node with weight 3 as D . Without
barrier synchronization, if we assign the topmost node to ?1, node
D to ?2 and all the other nodes to ?3, the DAG admits a straight-
forward schedule with a makespan of 5. On the other hand, with
barrier synchronization, if we set C (D) = 1, then no communica-
tion is possible in the interval (1, 4], and hence only one processor
can compute the upper part of the DAG. As such, we will still have

2 uncomputed nodes at time step 4, increasing the best makespan
to 6. Alternatively, setting C (D) = 2 also gives a makespan of 6.

One can also generalize this into a construction where the op-
timum cost essentially becomes twice as large when barrier syn-
chronization is introduced. Let : be a constant parameter, and con-
sider the construction from the proof of Lemma 4.3 with width and
length : , i.e. a DAG sorted into : layers of width : such that every
node in layer 8 ∈ [: − 1] has an edge to every node in layer (8 + 1).
Besides this, let us add an isolated node D withFF>A: (D) = : (we
can also add a common source and sink node to the DAG if we
prefer it to be connected). Finally, let us select % = : + 1.

Without barrier synchronization, the DAG can be scheduled in
a makespan of : . However, if synchronization is required, then
whenever D is computed, the remaining processors cannot com-
municate any values between each other, so they must stay idle
for (: − 1) time steps (or a single processor must compute an en-
tire layer, which essentially has the same effect, resulting in a delay
of (:−1)). Hence the best makespan with synchronization is 2:−1.
The ratio between the two optima is 2:−1

:
; we canmake this higher

than 2 − Y for any Y > 0 with a large enough choice of : .

B.4.2 Proposition 4.6. These have also been outlined in Section 4.
In models with communication, it suffices to take a source node E0
that forks into two directed paths of length ℓ . For ℓ large enough,
any of the models with communication assigns the two paths to
two different processors, otherwise the cost is much larger. With-
out latency, this results in a work cost of ℓ+1 and a communication
cost of6 in each of themodels, so the total cost/makespan is ℓ+6+1.
On the other hand, if we can duplicate E0 on both processors, then
we easily obtain a cost of ℓ + 1, which is smaller.

In case of classical scheduling without work weights, each inte-
ger point in time allows us to communicate the computed values
to all processors (even with barrier synchronization); as such, if a
node E is computed at time step C at the earliest, then its value can
be distributed to all processors by the beginning of time step (C+1),
so there is no motivation to compute E on further processors either
in time step C or later. Similarly, in case we have work weights but
no barrier synchronization, if C (E) +FF>A: (E) is the earliest time
when one of the processors finishes computing E , then the value
of E already becomes available on all other processors by this time
C (E) +FF>A: (E), so there is no motivation for any other processor
to begin computing E .

For the case of classical scheduling with both work weights
and barrier synchronization, consider Figure 3b. Without barrier
synchronization, the DAG admits a straightforward schedule of
makespan 5. However, with synchronization, a makespan of 5 is
not possible here: the top and bottom paths are both critical, so a
makespan of 5 is only possible if no communication happens in the
intervals (1, 3] and (2, 4]. This implies that the value of the grey
node, which becomes available at C = 2 earliest, cannot be sent to
a third processor until C = 4, and as such, the node on the mid-
dle path cannot be computed by a third processor. If we only start
computing this node at C = 4 or on one of the first two processors,
then the best makespan is 6. On the other hand, if duplication is
allowed, then we can compute the bottom path on ?1, duplicate
the grey node on both ?2 and ?3, and compute the top and middle
paths on ?2 and ?3, respectively, again achieving a makespan of 5.
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C COMPLEXITY FOR SPECIFIC DAG CLASSES

C.1 Proof of Theorem 6.1

C.1.1 Chain DAGs. We first show that for chain DAGs, there ex-
ists an algorithm that finds the best BSP schedule, and has a run-
ning time that is polynomial in =.

Proof of Theorem 6.1 for chain DAGs. The key observation
is that the optimal BSP schedule in chain DAGs always consists of
either 1, 2, ..., or % supersteps; more specifically, the optimum uses
at most (% − 1) rounds of communication (for clarity, we prove
this separately below in Lemma C.1). We then consider each case
separately, i.e. the best possible solution assuming that the number
of supersteps is 1, ..., or % , and then select the best of these to find
the optimum.

Now assume that the number of supersteps is some fixed( ∈ [%] .
More specifically, we assume that the total communication cost is
(( − 1), and then for convenience, we assume that these (( − 1)
rounds of communication indeed happen in different supersteps. If
one of the supersteps in the optimum actually had a communica-
tion cost of more than 1, then we can split this into several super-
steps of communication cost 1 each, and simply leave the compu-
tation phase of the newly created extra supersteps empty.

If the communication cost of a BSP schedule is( , then thismeans
that there are at most % ·( values communicated altogether. In fact,
this implies that we can iterate over all the possible values E and
source and target processors ?1, ?2 that took part in this commu-
nication: with = nodes and % processors, there are only = · %2 + 1
values for each communication step (including the possibility that
this communication step is not used), and hence the number of
possible configurations for communication is upper bounded by
(= · %2)% ·( , which is still polynomial in =. We will iterate through
all these configurations, find the best possible cost for each of them,
and simply return the best of these. Note that many of the config-
urations are actually invalid, e.g. if ?1 = ?2, or E is sent multiple
times from ?1 to ?2, but filtering these out is just a technicality.

Hence consider a given configuration for communication. Note
that for each of the chains that have one (or more) of the communi-
cated nodes, this already determines the assignment of each node
in the chain to a processor: if a node E is sent from ?1 to ?2, the
only possible reason for this in a chain DAG is that the part of the
chain up to E was executed on ?1, whereas the part starting after E
on ?2. For convenience we will even assume more than this: that
for these chains, we also know the assignment g for each node. In-
deed, since there are at most % ·( chains with communications, and
splitting each chain (of length at most =) between the ( supersteps

monotonically can happen in at most
( (=+(−1)

(

)
= $ (=( ) ways, this

again increases the number of possible cases to study by a factor

$ (=% ·(
2

) that is polynomial in =.
Note that in each case we are studying, the communication costs

for each superstep are already fixed, and the analyzed chains al-
ready contribute a known amount of work cost to each processor
and superstep. As such, our only goal is to consider the remaining
chains (free chains) that take part in no communication (and hence
each of them needs to be assigned to a single processor entirely),
and distribute them between the processors and supersteps in a
way that minimizes the total computation cost of the schedule.

This can be accomplished with a method that is essentially a
more complex variant of the well-known dynamic programming
solution for the multiway number partitioning problem [12]. That
is, we create a boolean table ) of (% · ( + 1) dimensions, where
the first % · ( dimensions correspond to a combination of a given
processor and superstep, and the last dimension corresponds to the
free chains. The first % · ( dimensions of ) will have cells labeled
from 0 to =, whereas the last dimension has cells labeled from 0

to the number of free chains. A given cell of the table indexed by
(1, 1) = 01,1, ... , (%, () = 0%,( and by 8 in the last dimension will
describe whether it is possible to assign the first 8 free chains to
processors and supersteps such that the number of nodes in each
processor ? ∈ [%] and superstep B ∈ [(] is exactly 0?,B . Initially, we
set each cell of the table to false, except the single cell that describes
the exact number of nodes sorted into each processor/superstep
earlier due to communications, and has 0 as its last index.

We can then fill this table out systematically, iterating over the
last index 8 (i.e. through the free chains). Given a current chain,
there are % different processors that the chain can be assigned

to, and for a chain of length ℓ , there are
( (ℓ+(−1)

(

)
= $ (ℓ( ) ≤

$ (=% ) ways to distribute it into the ( supersteps. For each of these
possible assignments, we update the corresponding values in the
subtable indexed by (8 + 1) in the last dimension. That is, if we
have an assignment (1, 1) = 11,1, ... , (%, () = 1%,( , and some cell
)
(
(1, 1) = 01,1; ...; (%, () = 0%,( ; 8

)
of the table was true, then we

also set)
(
(1, 1) = 01,1 + 11,1; ...; (%, () = 0%,( + 1%,( ; 8 + 1

)
to true.

This allows us to fill the entire table appropriately.
In the end, it simply remains to check all schedules in the last

subtable (where all free chains are assigned), compute the cost of
their schedules, and select the one with lowest cost; this gives us
the best obtainable schedule for the given communication config-

uration. Note that the table has size $ (=%
2+1), and there are $ (=)

free chains and $ (=% ) possible assignments for each free chain,

so the running time of the algorithm is bounded by $ (=%
2+%+2),

which is indeed polynomial in =. Running this process for each
possible configuration still results in polynomial time. �

It remains to show that we indeed need at most % supersteps.

Lemma C.1. The total communication cost in the optimal BSP

schedule for a chain DAG is at most (% − 1).

Proof. Note that the minimum work cost in a BSP schedule is
lower bounded by both =

% and the length ℓ<0G of the longest chain.
We show that it is always possible to achieve this work cost with a
total of (% − 1) communication rounds, and thus get a total cost of
max( =% , ℓ<0G )+(%−1) ·6. Since a higher number of communication
steps could only yield a higher cost, any such solution is clearly
suboptimal.

For this, let us set % ′ = % and =′ = = initially, and consider the
following iterative procedure. In each step, we take the currently
longest chain ℓ ′<0G . If ℓ

′
<0G ≥

=′

% ′ , then we assign the entire chain
to a single processor, and discard both this chain and the processor,
hence updating our values to % ′ ← (% ′−1) and =′ ← (=′−ℓ ′<0G ),

and continue the process. Otherwise, if ℓ ′<0G <
=′

% ′ , then we termi-
nate the iterative process, and develop a schedule for the remaining
chains in a single step. For this, we simply number the remaining
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nodes in all chains from 1 to =′, considering the chains in an arbi-
trary order and iterating though each chain from beginning to end,
and then we assign the nodes {1, ..., =

′

% ′ } to the first processor, the

nodes { =
′

% ′ + 1, ...,
2·=′

% ′ } to the second processor, and so on.
We can then execute the nodes on the last % ′ processors in any

desired order; whenever we reach a node on ?1 with a successor
that is assigned to a different processor ?2, we simply close the
computation phase, and add a communication phase to send this
value from ?1 to ?2 (and possibly others that are available). Since
there are at most (% ′ − 1) nodes with a successor assigned to a
different processor, this results in a communication cost of at most
% ′−1 < %−1. The total work cost on each of the last % ′ processors
is exactly =′

% ′ ; note that our updates of %
′ and =′ always ensure that

=′

% ′ ≤
=
% . On the processors discarded earlier (assigned to a single

chain), we simply compute the next node in each step, hence the
work cost on these is bounded by ℓ<0G . �

C.1.2 Discussion. Note that the polynomial algorithm above can
easily be adapted to the case of having non-zero latency ! > 0:
since each of the solutions we consider has a known number of
supersteps, we can simply add the latency costs to each candidate
solution and compare the different solutions this way.

As for adapting the algorithm to the other communication mod-
els in Table 3: switching to broadcast operations has no advantage
on chain DAGs, since each node has outdegree at most 1, so each
value is required on at most one further processor. In case of free
data movement, some further configurations of communication be-
come valid, e.g. if E is transferred from ?1 to ?2 and then from ?2
to ?3, then we can assume that the chain part starting at the suc-
cessor of E is computed on ?3. However, this is only a slight change
in the conditions for evaluating the validity of each configuration.

We also note that the earlier work of [14] also studies optimal
BSP scheduling for chain DAGs. In particular, this work claims that
the BSP scheduling problem is already NP-hard on chain DAGs;
this might look surprising at first glance, since it seemingly con-
tradicts our result. The proof of [14] uses a reduction to the par-
titioning problem (i.e. multiway number partitioning with only 2

classes) in the case of ( =1 supersteps, and invokes the fact that this
partitioning problem is NP-complete. This raises the underlying
technical question of how our problem input is actually encoded.
That is, given some integers 01, ..., 0: , the dynamic programming
algorithm for partitioning is a so-called pseudo-polynomial time al-
gorithm. This means that it only takes polynomial time in terms of
the sum of the numbers

∑
08 (which corresponds to = in our case),

but if the numbers 01, ..., 0: are provided in binary form in the in-
put, then this poly(=) time is in fact exponential in the number of
input bits; as such, from a complexity theoretical perspective, the
problem is still NP-hard.

For the BSP scheduling of chain DAGs, this means the following.
If we restrict our interest to chain DAGs, then it indeed becomes
possible to select a different, more compressed encoding format
for our inputs (only describing the length of each chain, as a bi-
nary number) which makes the problem NP-hard. However, if we
consider the input of the problem to always be a DAG description,
listing the nodes and edges in the DAG (which we believe to be a
more natural problem formulation in general), then the problem

is not NP-hard anymore, since our algorithm above has a running
time that is polynomial in the number of nodes =.

We also point out that for this polynomial solution, it is once
again a critical assumption that the number of processors % is a
constant, and does not scale arbitrarily with =. If % were a part of
the input (as assumed in some other works), then the problem eas-
ily becomes unreasonably hard; e.g. a reduction from 3-partition
shows that the problem is already NP-hard for the simple case of
chain DAGs and only ( =1 superstep, as also noted in [14].

Finally, we note that [14] also carries out a more detailed analy-
sis of the largest possible number of supersteps that is required for
an optimal schedule in chain graphs, showing both an upper and
lower bound of essentially %

2
for this. However, for our algorithm

above, the simpler upper bound of % was already sufficient.

C.1.3 Connected chain DAGs. We now discuss the modifications
required if our chains also have a common source node E0.

Proof of Theorem 6.1 for connected chain DAGs. The sim-
plest possible schedule in this case is to have a single superstep,
assigning the entire DAG to ?1 at a cost of =; we will compare this
to the rest of the solutions.

If our schedule has ( ≥ 2 supersteps (and actual communica-
tion between them), then naturally E0 will be in the first superstep.
Furthermore, we can show that it is always optimal to place E0 in
a separate superstep. In particular, assume that some chain up to
another node E is also assigned to superstep 1 (and hence c (E0)).
If E is the last node of the chain, or if it has a successor E ′ assigned
to c (E ′) = c (E0), then we can simply reassign the chain to super-
step 2: this decreases�F>A:

(1) by the length of the chain, increases
�F>A:

(2) by at most the same amount, and incurs no communica-
tion. Otherwise, if E has a successor E ′ assigned to c (E ′) ≠ c (E0),
then we can reassign the whole chain up to E to processor c (E ′)
and superstep g (E ′). This still requires us to send one value from
c (E0) to c (E ′) (we can do this in the same superstep as before),
and as before, the work cost of superstep 1 is decreased by at least
as much as the work cost of superstep g (E ′) is increased.

After all these reassignments, E0 is in a superstep of its own,
and only affects the remaining part of the DAG in a very simple
way: if we have a chain starting with a processor different from
c (E0), then this will incur an extra communication step fromc (E0).
However, with % processors and a single value E0, this still results
in at most (% − 1) extra communication steps. Indeed, applying
the method in Lemma C.1 still provides a solution of cost at most
max(=−1% , ℓ<0G ) + 2 · (% − 1) · 6 + 1, even if all processors appear
in the beginning of some chain and thus E0 is sent to them all in
the first superstep, so �2><<

(1)
= % − 1. This shows that the op-

timal schedule still consist of at most (2 · % − 1) supersteps, since
otherwise it would produce a higher cost.

Hence we can still execute the same dynamic programming ap-
proach as before, but now allowing (2 ·%−2) different communica-
tion steps, including steps that send the value of E0. Naturally, the
communications of E0 must be handled slightly differently. As they
determine the superstep B when the value of E0 becomes available
on each processor ? , the solutions need to be filtered out accord-
ing to this: before superstep B , no segment of any chain can be as-
signed to this ? . Nonetheless, it is still only a technicality to check
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the validity of each configuration (in polynomial time), and then
divide the free chains into supersteps and processors according to
the availability of E0. The table can be filled in each configuration
the same way as before to find the optimal schedule. �

In the FS model, the method above only needs a minor modifi-
cation, as E0 may now be relayed between the processors; how-
ever, the communication steps in each configuration still deter-
mine when E0 becomes available on each processor. On the other
hand, in the broadcast models, the algorithm actually becomes sig-
nificantly simpler, since in a single round of communication, E0
reaches all the processors in superstep 1, and from this point the
construction behaves like a chain DAG, not affected by E0 at all.

C.2 Proof of Theorem 6.2

We prove Theorem 6.2 through a reduction from the clique prob-
lem: given an undirected graph� ′(+ ′, �)′ and a number : , the task
is to find a subset of : nodes in + ′ such that any two of them is
adjacent. This problem is long known to be NP-complete [12]. Our
reduction will only have % = 2 processors, hence it applies to any
of the communication models equivalently.

Proof of Theorem 6.2. Let us consider some fixed parameters
"1 , "2 . The main tool in our construction is a so-called 2-level

block* = (* (1) ,* (2) ), which consists of (i) a set* (1) of"1 nodes
which will be on the first level of the DAG, and (ii) another set* (2)

of an unspecified number of nodes on the second level of the DAG,
such that each node in * (1) has an edge to each node in* (2) . We
call |* (2) | the size of the block; in our construction, this will al-
ways be a multiple of"2 . Intuitively, such a block will ensure that
each node in * (2) has to be assigned to the same processor; if the
block is split, then each node in* (1) will need to be communicated
to at least one of the processors used in * (2) , hence resulting in
a communication cost of at least "1, which will be too large to
provide a reasonable solution.

Given a clique problem on a graph� ′(+ ′, �)′ on=′ = |+ ′ | nodes
and a parameter : , we turn this into a BSP scheduling problem as
follows.

• For each node E ′ ∈ + ′, we create a 2-level block *E′ of size

|*
(2)
E′
| = "2. Besides, we add two further blocks *?1

and *?2

of sizes (2 · =′ − :) ·"2 and (=′ + :) ·"2 , respectively.

• Then for each edge (E ′
1
, E ′

2
) ∈ �′, we add a single node E4′ on

the first level of the DAG, and draw an edge form E4′ to (i) an

arbitrary node in *
(2)
E′
1

, (ii) an arbitrary node in *
(2)
E′
2

, (iii) an

arbitrary node in * (2)?1
.

• We add |�′ | −
(:
2

)
more nodes Ê8 to the first level of the DAG,

and add an edge from Ê8 to (i) an arbitrary node in *
(2)
?1

, and

(ii) an arbitrary node in * (2)?2
.

• Finally, we add =′ ·"1 +
(:
2

)
isolated nodes to our DAG; we will

imagine these nodes to be a part of level 1.

• For our parameters, we select "1 := |�′ | + 1 and "2 = "1 ·
(=′ + 1) + 2 · |�′ | · 6. Note that the size = of the resulting DAG
construction is still polynomial in the size of� ′.

• In the derived BSP scheduling problem, we set % = 2, ! = 0,
choose 6 as a small constant (e.g. 6 = 2), and set the allowed

cost to �0 =
=
2
+ (|�′ | −

(:
2

)
) · 6.

We first outline the main idea of the construction, and then dis-
cuss the technical details separately.

(i) The computational cost of any schedule is at least =
2
, so any

schedule within the allowed cost can have at most |�′ | −
(:
2

)

communication steps. As outlined before, assigning a block to
several processors results in a cost of"1 > |�′ |; hence in each
valid schedule, the level-2 part of each block must entirely be
assigned to the same processor.

(ii) In the second level of our DAG, the blocks in our construction
essentially allow us to adapt the packing technique in the re-
cent work of [38] to our BSP scheduling problem, ensuring that
we have the desired number of blocks assigned to both pro-

cessors in a reasonable solution. That is, assigning both *
(2)
?1

and * (2)?2
to the same processor would result in a work cost of

at least 3 · =′ · "2 , which is significantly larger than �0. As

such, * (2)?1
and *

(2)
?2

are assigned to different processors; as-
sume w.l.o.g. that these are ?1 and ?2, respectively.

(iii) Now consider the second level of the blocks*E′ , which all have
size"2 . One can then observe that we need to assign exactly :
of these to ?1 and (=′ − :) of them to ?2, otherwise, the work
cost will be split in a very imbalanced way between ?1 and ?2
on the second level, and sincemost of the nodes are in this level,
this also makes the total work cost too high.

(iv) As for communication costs, the nodes Ê8 all have a successor
on both processors, hence they will all incur a communication
step, regardless of which processor they are assigned to. Also,

since * (2)?1
is assigned to ?1, each value E4′ is required on pro-

cessor ?1 at some point; as such, node E4′ will incur a commu-
nication step if and only if one of its other two successors is
assigned to ?2.

(v) The construction allows us to distribute the work cost evenly
between the two processors on both levels, hence resulting in
a total work cost of =

2
. As such, a valid solution must have a

communication cost of ( |�′ | −
(:
2

)
) · 6 at most, which means at

most 2 · ( |�′ | −
(:
2

)
) communication steps, half of them from ?1

to ?2 and the rest in the reverse direction.

(vi) The isolated nodes incur no communication, and neither do
the first levels of blocks if they are assigned to the same pro-

cessor as the second level. The nodes Ê8 already incur |�′ | −
(:
2

)

communication steps. As such, the communication cost will be
determined by the number of E4′ that have a successor assigned

to ?2. To limit the number of communications to 2 · ( |�′ | −
(:
2

)
)

altogether, we need to ensure that the nodes E4′ also incur at

most |�′ | −
(:
2

)
communication steps, i.e. there are

(:
2

)
distinct

nodes E4′ that have all of their successors assigned to ?1.

(vii) Altogether, this means that we need to select : of the second-

level blocks* (2)
E′
1

to assign to ?1, such that the number of edges

induced by these : nodes is at least
(:
2

)
, i.e. the nodes form a
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clique. Hence a BSP of cost�0 exist if and only if� ′ contained
a clique of size : .

More formally, given a clique of size: in� ′, we can assign (both
levels of) the corresponding : blocks and*?1

to ?1, and (both lev-
els of) the remaining blocks to ?2. This ensures that the number
of level-2 nodes assigned to both processors is 2 · =′ ·"2, and the
number of level-1 nodes assigned to ?1 and ?2 is (: + 1) ·"1 and
(=′ − : + 1) · "1, respectively. We assign all the nodes E4′ also to
?1, the nodes Ê8 to ?2, and as for the remaining isolated nodes, we

assign (=′ − :) · "1 of them to ?1, and : · "1 +
(:
2

)
of them to

?2. This ensures that the number of level-1 nodes assigned to both
processors is (=′ + 1) ·"1 + |�

′ |. As such, we can assign all nodes
on the first and second levels, respectively, to supersteps 1 and 2,
and the total work cost of the two supersteps will be =

2
. Finally, the

nodes Ê8 will be sent from ?2 to ?1, and the E4′ not corresponding
to the clique edges will need to be sent from ?1 to ?2, resulting in

a communication cost of ( |�′ | −
(:
2

)
) ·6. This indeed provides a BSP

schedule of total cost �0.
Conversely, assume that a BSP schedule of cost �0 exists. As

discussed before, this implies that the second level of all blocks

is assigned to a single processor, * (2)?1
and *

(2)
?2

are assigned to

?1 and ?2, respectively, and exactly : of the * (2)
E′

are assigned to
?1. The work cost of the solution must be =

2
at least. To have a

communication cost of at most ( |�′ | −
(:
2

)
) ·6, we can have at most

2 · ( |�′ | −
(:
2

)
) communicated values; after subtracting the Ê8 , only

|�′ | −
(:
2

)
communicated values remain. All the edges in �′ not

induced by the : chosen nodes will result in a communication step,

so to keep the number of these steps below ( |�′ | −
(:
2

)
), the : nodes

must induce
(:
2

)
edges at least, i.e. they must form a clique.

It remains to discuss a few technical details regarding our pa-
rameters. Note that the number of nodes in the construction is

= = 2 ·
(
"1 · (=

′ + 1) + |� |′
)
+ 4 · =′ ·"2 = $ (=′2 · |�′ |) .

For point (ii) of the argument above, we also need to show that
3 · =′ ·"2 > �0; indeed, since

�0 = "1 · (=
′ + 1) + |� |′ + 2 · =′ ·"2 +

(
|�′ | −

(
:

2

))
· 6 ,

we only need to show

=′ ·"2 > "1 · (=
′ + 1) + |� |′ +

(
|�′ | −

(
:

2

) )
· 6 ,

which follows from our choice of "2 = "1 · (=
′ + 1) + 2 · |�′ | · 6.

Also, for point (iii), note that if we choose to assign more or less
than : of the blocks *E′ to ?1, then one of the processors will be
assigned at least (2 ·=′ + 1) ·"2 nodes on the second level. Even if
all nodes on the first level are assigned to the other processor, the
number of nodes on this processor will be too high. In particular,
we have (2 · =′ + 1) ·"2 > �0; this is equivalent to

"2 > "1 · (=
′ + 1) + |� |′ +

(
|�′ | −

(
:

2

))
· 6 ,

which once again holds due to our choice of "2 . As such, a work
cost of at least (2 · =′ + 1) · "2 indeed cannot provide a valid
BSP schedule, so second-level blocks must be distributed in a com-
pletely balanced fashion. �

C.3 Proof of Theorem 6.3

For in-trees, we provide a reduction from the so-called 3-partition
problem. In this problem, we are given a list of< positive integers
01, . . . , 0< , with< = 3·<′ for some other integer<′. The integers
are known to satisfy

∑<
8=1 08 = <′ · ) for some integer ) , and

also )
4
< 08 <

)
2
for all 8 ∈ [<]. The goal is to divide the numbers

into<′ distinct subsets of size 3 each, such that the sum in each
subset is exactly ) . This problem is known to be NP-hard [12] (in
the strong sense, i.e. even if the input has length< ·) ).

Our construction to convert a 3-partition problem to a BSP sched-
uling task in in-trees will be described in several steps. We first
describe the gadgets used in the proof, and then prove the main
properties of our construction. We then show in a separate step
how to embed the input 3-partition problem in our construction.
Finally, we sort out the technical details.

For ease of presentation, we will often describe our BSP sched-
ule as if it was a classical scheduling approach, i.e. as if the nodes
within each superstep were ordered in an arbitrary topological or-
dering, and hence each single node is executed in a given integer
time step.

C.3.1 Main ideas and tools. Consider some integer parameters" ,
"0,�,�; wewill decide the values of these later. Intuitively, wewill
have " > "0 and � > �, and " and "0 will be much larger than
� and �. The parameters will satisfy "0 +� < " < "0 + �. Alto-
gether, our construction will consist of= = 4 ·< · (2 ·" +"0) + 4
nodes initially, and % = 4 processors. We will choose 6 as an arbi-
trary constant, e.g. 6 = 2.

The main gadgets in our construction will be so-called cones: a
cone on : nodes consists of a single node D , and (: − 1) further
nodes that have an edge to D . We call node D the top of the cone.
A cone essentially ensures that we need to assign most of these :
nodes to the same processor; indeed, if :0 of the predecessors of D
are assigned to a different processor than D , then this results in a
communication cost of at least :0, since these values all need to be
sent toD . Due to this, we will refer to the processor assigned to the
top node of the cone as the processor assigned to the cone itself.

The allowed scheduling cost in our derived BSP problemwill be
set to �0 =

=
% + 3 ·< ·6. Since the work cost is at least =

% , this will
mean that any BSP schedule can have at most 3·< communication
rounds.Wewill show that this amount of communication is indeed
needed in any reasonable schedule, and hence the work cost needs
to be exactly =

% . In other words, this implies that every processor
needs to execute a node in every time step.

Our construction will contain a final cone of size =
% where the

top node D0 is a sink node of the DAG. Furthermore, there will
be 3 ·< further cones in the DAG (called semi-final cones, to be
described in detail later), each of size at least"0 , and the top node
of each of them will have an edge to D0. Altogether, this implies
that the top node of each semi-final cone has to be assigned to a
different processor than D0; if not, then the given top node and
D0 together have more than =

% +"0 immediate predecessors. This
cannot be a solution below the cost limit: if at least =

% +"0 − 3 ·<
of these predecessors are on the same processor as D0, then that
results in a too high work cost (since our parameters will ensure
"0 > 3 ·< · (6 + 1)), otherwise we need to send more than 3 ·<
values to this processor, yielding a too high communication cost.
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This implies that to each of the 3 ·< semi-final cones, we will
need to assign a different processor than c (D0). This already gives
us 3·< values that need to be communicated toD0 from a different
processor, hence establishing a communication cost of at least 3·<,
and as a result, a work cost of exactly =

% .
Note that this also means that each of the ( =% − 1) predecessors

ofD0 within the final cone needs to be assigned toc (D0), otherwise
the communication cost grows even higher. As such, there will be
one processor in our schedule, let us call it ?4, which is not par-
ticularly interesting: it will compute the source nodes of the final
cone in the first ( =% − 1) steps, D0 in the last step, and nothing else
in the DAG.

Also note that having 3 ·< values to transfer from semi-final
cones to ?4, which is exactly the allowed communication cost, im-
plies that one of these values need to be sent to ?4 in every round
of communication. This means that whenever we need to commu-
nicate any value within our DAG, we always need to have a new
semi-final cone already computed and ready. Hence intuitively, the
semi-final cones ensure in our solution that each of the commu-
nication rounds must happen at earliest at a given point in time,
since the next communication round can only be used once a new
semi-final cone is computed.

Besides the cones, our construction will also have a critical path
of length =

% ; hence to have a work cost of
=
% , we will need to make

sure that the 8-th node of this path is computed in the 8-th step for
all 8 ∈ [ =% ]. However, there will be further cones attached to this
path, which, intuitively speaking, require you to have communi-
cation rounds at latest in given supersteps, otherwise we cannot
execute all the predecessors of the path node and hence cannot
compute the 8-th node in time. Together with the semi-final cones
above, this will ensure that communications have to happen ex-

actly at given time steps. This will be crucial for our reduction.

C.3.2 Construction outline. Our construction will essentially con-
sist of< identical copies of a set of gadgets. We now describe these
gadgets and discuss the properties they ensure. We will later show
how to customize each gadget slightly to represent a concrete num-
ber 08 of the 3-partition problem.

As for the semi-final cones, 2 ·< of these will simply be cones
of size " , with their top nodes having an edge to D0. The remain-
ing<, however, we be turned into so-called triple cones. For each
triple cone, we create nodes D1, D2, D3 that are the top nodes of a
cone of size "0, � and �, respectively, and we then add the edges
(D3, D2) and (D2, D1) to our DAG (besides the edge (D1, D0), which
was already mentioned before).

As for the critical path, we will divide it into< continuous seg-
ments of size (2·" +"0), plus a single final node. For each of the
segments, we add 3 separate cones such that the top node of the
cone is a given node of the segment. In particular, for each segment,
we add (i) a cone of size (" −�) with its top being the (" + 1)-st
node of the segment (from the source), (ii) a cone of size (" − �)
with its top being the (2 ·" + 1)-st node of the segment, and (iii)
a cone of size "0 with its top being the (2 ·" +"0 + 1)-st node,
i.e. the node immediately after the segment. These 3 top node split
the segment into 3 parts.

This implies that the 8-th top node on the critical path (let us
denote it by E8 ) has at least 8 · (2 ·"0 − �) predecessors. We will

use this to show that at least one communication round is always
needed between E (8−1) and E8 for all 8 ∈ [3 ·<]. For 8 = 1, this is
clear: the top node E1 has (2 ·" −�) predecessors, and recall that
it has to be computed exactly in the (" + 1)-st time step. With
(2 ·" − �) > " , this results in a too high work cost if done on a
single processor; as such, these predecessors must be split among
at least two processors, and therefore at least one communication
round is required.

Also recall that one of the semi-final cone values has to be trans-
mitted in each communication round, so in the first " steps, an-
other work cost of at least " has to be invested into one of the
semi-final cones (either a triple cone or a regular one). Since there
is at most�work cost available that is not used on the critical path
or the cone attached to it, the earliest possible time for finishing
the semi-final cone (and hence having the computation step) is at
time (" −�). Also, since all these nodes have to be computed, the
processors can compute at most� further nodes in the first" steps
besides those mentioned so far.

The same argument can be continued in an inductive fashion.
Node E8 has 8 · (2 · "0 − �) predecessors at least. Up to the time
when we compute E (8−1) , there are at most (8 − 1) · � nodes in
the DAG that have been computed, except for (i) the critical path
component up to E (8−1) , (ii) 8 distinct semi-final cones that were
completely finished, and (iii) the final cone which we disregarded
for convenience. Therefore, out of the at least (2 ·"0−�) nodes in
the path between E (8−1) and E8 and the cone attached to E8 , there
are still at least (2 · "0 − �) − (8 − 1) · � nodes that are not yet
computed.There are either" or"0 time units between computing
E (8−1) and E8 ; if we have (2 ·"0 −�) −< ·� > " , this ensures that
we cannot execute all the remaining nodes on a single processor,
so another round of communication is required before E8 . Once
again, at least " work cost is needed to finish another semi-final
cone by this round; this shows that the number of extra nodes that
are computed (besides the path up to E8 and the new semi-final
cone) is again upper bounded by (8 ·�).

Hence one round of communication is needed between each two
top nodes on the critical path; since we can only have 3 ·< commu-
nication steps altogether, thismeans that there is exactly one round
of communication between each two top nodes. This also ensures
the convenient property that the cones attached to the path are all
entirely assigned to single processor: otherwise, they would incur
further communication cost without reasonably splitting the work
cost between E (8−1) and E8 . As such, between each pair E (8−1) and
E8 , the path consists of two continuous parts, with the nodes in the
first and second parts are assigned to to different processors.

As a detail, note that we also add 2 isolated nodes to the con-
struction to increase the number of sink nodes from 2 to 4, and
hence ensure that all processors can still compute in the last step.

C.3.3 Scheduling the construction. We now go over the segments
in another induction from source to sink, and show that each seg-
ment can only be scheduled in a specific way without violating the
allowed cost �0. Let us consider the first segment in detail. Recall
that all three parts of this segment must have exactly one commu-
nication round.

We begin with the first part of the segment, up to E1. This has
a path of length (" + 1) ending in E1 , and a cone of size (" − �)
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with E1 as its top node. To compute E1 by time step (" + 1), we
need to compute all the (2" − �) predecessors of E1; this leaves
only (" + �) further nodes we can compute on our 3 processors
in the first " times steps. Note that we also need to finish one of
the semi-final cones by time step " in order to send a value to ?4
in the first communication round. As the triple cones all have size
"0 +�+� > " , we can only achieve this by computing one of the
semi-final cones of size" .

There are also several other observations we can make. Firstly,
to avoid further communication, the semi-final cone must be as-
signed entirely to a single processor; let us call this w.l.o.g. ?3. This
implies that the communication must happen after exactly" steps
(at the last possible point in time), i.e. we have �F>A:

(1)
= " . As

such, another processor ?1 must process the first " nodes of the
path, and a third one ?2 must process the ("−�) nodes in the cone
on the path (and also E1 , but this is already in the computational
phase of the next superstep). As such, in the communication phase
of superstep 1, ?1 sends the "-th node of the path to ?2, and ?3
sends the top node of a semi-final cone to ?4. Besides this, ?2 can
compute � further nodes in another part of the DAG.

Now consider the second part of the segment, up to E2, and time
steps (" + 1) to 2·" . This is again a path of length (" + 1) ending
in E2 , and a cone of size (" −�) attached to E2. However, also note
that the beginning of the path must be assigned to g (E1) = ?2,
even up to the (2" − �)-th node, otherwise the remaining path
and the cone would contain more than " nodes altogether, and
hence would require another communication step. Thismeans that
most of the capacity of ?2 in this interval is used on the path. In
particular, we cannot use ?2 to compute another semi-final cone,
since even with the leftover computations from earlier, we have at
most (� + �) steps to do this, and both" and"0 are significantly
larger than (� + �).

Hence another semi-final cone must be computed on ?1 or ?3.
Note that the role of these two processors is symmetrical here: the
nodes previously computed by them have no direct connection to
the rest of the DAG, and they both sent a value in the first commu-
nication step, and did not receive one. Assume that the semi-final
cone is computed on ?1. This cannot be a triple cone, since even
with the leftover from the earlier steps, we can compute at most
(�+") < (�+�+"0) nodes on a single processor, and using more
processors requires extra communication. As such, ?1 must com-
pute a regular semi-final cone of size" in the interval ["+1, 2·"],
which again shows that the second round of communication hap-
pens after time step 2 ·" . This means that ?2 computes the path up
to length 2·" , and ?3 computes the attached cone, and then node
E2 in step (2·" +1). In the communication round, we send a value
from ?2 to ?3 and from ?1 to ?4. There are � leftover computations
that ?3 can execute in this time interval.

Finally, consider the third part up to E3; recall that this is shorter,
corresponding only to the time steps (2·" +1) to (2·" +"0). Once
again the beginning of the path is assigned to ?3, up to at least
node (2 ·" +"0) − �, otherwise the rest could not be completed
in time by a single processor, even with the leftover from earlier.
Then 2 ·� is again much smaller than "0, so the semi-final cone
must be computed by a processor other than ?3. However, ?1 and
?2 only have"0 time steps in this interval, plus ?2 has� leftovers,

and"0 +� < " ; recall that ?3 also has � leftovers, but this cannot
be combined in a semi-final cone with ?1 or ?2.

This means that it is not an option to compute a regular semi-
final cone by time step (2·"+"0); the only way to transmit a value
to ?4 in time is to compute a triple cone. Note that a triple cone
has � + � +"0 nodes, and the path component between E2 and E3
has 2·"0 nodes, so this is also only possible if we use all the 3·"0

computations in our time interval, plus the (� + �) leftovers from
earlier; in other words, no leftovers remain after this step. The top
of the triple cone cannot be finished before step (2·" +"0), since
then all three processors would need to actively work on the path
and the attached cone in the remaining steps, resulting in extra
communication; hence the top node D1 is only computed in step
(2 ·"+"0), and communication can only follow afterwards, again
at the last possible point in time.

This also means that ?3 is computing the path until node (2·" +
"0), and not doing any other computations in this interval. Then
the � leftover steps of ?3 from earlier cannot be used anywhere
else than in the cone of size � in the triple cone; all other cones are
smaller or larger (i.e. sizes� or"0), so otherwise some cone would
be split, incurring extra communication. Since these leftovers are
computed between time steps (" + 1) to 2 ·" , the cone of size �
in the triple cone must be computed by the leftovers of ?2 in the
interval 1 to " , to make D3 already available to D2 by time step
2 ·" at the latest. The cone attached to E3 and the largest cone in
the triple cone are then assigned to ?1 and ?2 between time steps
(2 ·" + 1) to (2 ·" + "0) in either way; we will assume that ?1
computes the attached cone and ?2 computes the semi-final cone,
since this nicely maintains the periodic use of the processors for
the next segment that follows after E3 .

Note that the assignment described above indeed provides a
schedule with the desired cost: all processors are active in each
time step, so the work cost is (2 ·" +"0). The assignments in the
triple cone also require further communication: sending D3 from
?2 to ?3 in superstep 1, and sending D2 from ?3 to ?2 in superstep
2. However, this does not increase the cost of the given ℎ-relations.

The same proof can be used in an inductive fashion for the next
segments that follow. In particular, the arguments above ensure
that we need to use all the 3 processors in all (2·"+"0) time steps,
so no other nodes are computed. The only connection between
the already assigned part of the DAG and the rest is the node E3,
which is assigned to ?1; however, the role of the processors in the
rest of the schedule is symmetrical, so this is not a restriction in
any sense. The number of regular semi-final cones is decreased by
2, the number of triple cones by 1; as such, the unassigned part
of the DAG behaves exactly like the same construction, but now
containing only (< − 1) segments.

This induction proves that in each segment of the DAG, a valid
scheduling in this in-tree is only possible by repeating the steps
described above for each segment from the beginning to the end
of the critical path.

C.3.4 Making the communication times fixed. In our actual reduc-
tion, the different segments will not be so flawlessly separated from
each other as described above; in particular, we might have a very
small number of leftover nodes from the previous segments. While
the number of these nodeswill bemuch less than� or�, they could
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still influence with the behavior of the construction, unfortunately,
so we need a further technical step to prevent this.

More specifically, we will sort the segments into consecutive
triplets, i.e. segments 1 to 3, segments 4 to 6, and so on, referring
to each such triplet as a 3-segment. Note that each such 3-segment
has exactly 9 communication steps. The main idea of the reduc-
tion is that each triple cone will correspond to a number 08 in the
original 3-partition problem. Recall from above that any schedule
assigns each triple cone to a given segment, so a 3-segment corre-
sponds to 3 consecutive numbers. We will ensure that the schedule
is only valid if the 3 numbers (i.e. triple cones) assigned to each of
our 3-segments sum up to exactly ) .

However, as mentioned, this method will result in a few leftover
nodes within the 3-segment, from the first to the second segment,
and from the second to the third segment (but no leftover after the
entire 3-segment). The problem with this is that e.g. in segment 2,
these leftover nodes from segment 1might be used to pre-compute
some nodes of the semi-final cones earlier, which might allow us
to execute e.g. the first communication of the segment after less
than " steps. This in turn can allow us to assign (� + 1) nodes
to processor ?2, and only (" − 1) to ?1, in contrast to what we
described above, and with that the correctness of the reduction
would not be guaranteed.

In order to resolve this, we further expand our construction to
ensure that the communication steps happen at exactly the fixed
time steps described in Section C.3.3. More specifically, we create
4 identical copies of the DAG described so far (and also increase
the number of processors to % = 16, so the work cost =

% remains
unchanged). While this might sound like a major modification, in
fact, each of the 4 copies of the construction will still behave in
the same way as outlined before. In particular, the same induction
method as in Section C.3.2 still shows that a separate communi-
cation round is needed between each E (8−1) and E8 : there are still
at most 4 · (8 − 1) · � leftover nodes in the DAG until computing
E (8−1) , so (2 ·"0 − �) − 4 ·< ·� > " implies that the next part of
the path again requires a communication step, and since we also
need to compute 4 semifinal cones (of size at least"), the number
of leftover nodes for the next induction step is at most (4 · 8 ·�).

It then follows that each of the 4 copies can once again only
be scheduled in the way outlined in Section C.3.3. In particular,
the same arguments show that the 4 groups of � leftover nodes
from the first part and the 4 groups of � leftover nodes from the
second part of the segment can only be on 8 distinct processors;
this means that none of these leftovers can be combined in the
same cone anyway, and thus each of the 4 segments can still only
be scheduled as discussed before. As a technical note, in the third
part of the segment, we can now assume � > 4 ·� for simplicity
to make it easier to see that the size-� leftover groups can only be
used for the cones of size �.

The reason for creating 4 distinct copies of the DAG is as fol-
lows. In our reduction, we will adjust the cone sizes in one of the
4 copies of the construction (we call this the main copy) to model
the 3-partition problem. However, as mentioned before, this em-
bedding of 3-partition in the main copy will also result in up to 3

very small groups of leftover nodes between the segments, on (at
most) 3 distinct processors. Having 4 copies ensures that in each
part of every segment, there is at least one copy where none of

these inter-segment leftover nodes is used, and hence it is guaran-
teed that the semi-final cones in this copy are indeed only finished
after "/"/"0 time steps (in the first/second/third part of a seg-
ment, respectively). As such, regardless of the remaining 3 copies,
the earliest possible times to execute each communication step in
our schedule are still the time steps discussed in Section C.3.3.

We note that this method only ensures that the communication
times are fixed; the small leftover groups may still be used to pre-
compute a part of some cones, and hence finish these cones slightly
earlier. However, in this case, we end up with the same number
of leftovers on the same processor after the cone is finished, and
hence this does not affect the properties of our construction.

C.3.5 Embedding 3-partition. Note that to prove the properties of
the construction above, it was only necessary to have an approxi-
mate value for the parameters � and �; intuitively speaking, any
values in the same magnitude would guarantee these properties.
As such, the key idea of the reduction is to consider the main copy
of our construction, and fine-tune the values� and � here to model
our 3-partition problem.

In particular, we will consider the < triple cones in the main
copy, and turn each of them into a representation of the number
08 in the 3-partition problem. For this, we replace the cone of size
� in the triple cone by a cone of size (� + 08), and we replace the
cone of size � by a cone of size (� + 2·) − 08).

Furthermore, the cones attached to the critical path are also
modified in the main copy. In particular, in each 3-segment, the
sizes of the cones attached to E8 , ..., E (8+8) were originally

(" − �, " − �, "0, " −�, " − �, "0, " −�, " − �, "0)

in order; we replace this by the new sequence

(" − (� +) /2), " − (� + 5 ·) ), "0, " − (� +) /2),

" − �, "0, " −�, " − �, "0) .

This creates at most 6·) further leftover computation steps within
each such 3-segment in the main copy. As discussed before, this
does not affect the time when the communication steps happen.

Furthermore, note that the number of nodes in any triple cone
sum up to (� + � + 2 ·) ) (not considering the cone of size "0), so
three triple cones add up to 3 · (� + � + 2 ·) ). On the other hand,
in any 3-segment, the number of leftover nodes from the attached
cones of the path is now also

2 · (� +) /2) + (� + 5 ·) ) +� + 2 · � = 3 · (� + � + 2 ·) ) .

This means that in order to finish three triple-cones by the end of
the 3-segment, i.e. in any valid schedule, there can be no leftover
nodes at all by the end of the 3-segment: every computation step
of each processor is required.

Assume w.l.o.g. that the triple cone chosen in the first segment
(of a given 3-segment) corresponds to the number 01. Since the
triple cones of the main copy have cone sizes larger than � and
�, in the first segment these can only be computed with the corre-
sponding leftovers groups of size (�+) /2) and (�+5·) ) from the at-
tached cones in the main copy. This implies that a valid scheduling
of the first segment results in (�+) /2)−(�+01) = ) /2−01 leftover
nodes on one processor, and (�+5·) )− (�+2·)−01) = 3·) +01 left-
over nodes on another processor after the segment. As discussed
above, these must be used to pre-compute other nodes in the same

23



Pál András Papp, Georg Anegg, and A. N. Yzelman

3-segment; in particular, they need to be used to compute some
of the “�-type” and “�-type” cones (i.e. the cones of size (� + 08)
and (� + 2 ·) − 08)) in the main copy, since the corresponding pro-
cessors will not have enough computation steps for these cones in
segments 2 and 3 by design.

Now consider the second segment, corresponding to some num-
ber 02. Here the cone of size (� + 2 ·) − 02) cannot be computed
by any of the leftover groups in this segment (they all have size at
most �), so we need to use the leftovers from the previous segment.
Moreover, the () /2 − 01) leftovers from the previous �-type cone
cannot be used for this cone, since these nodes would still not be
enough to compute it in time, as

() /2 − 01) + � < � + 2 ·) − 02 .

Hence to compute the �-type cone in the second segment, the left-
over nodes from the previous �-type cone need to be used, and
hence this second �-type cone in the main copy needs to be as-
signed to the same processor. As for the cone of size (� + 02),
this cannot be combined from a leftover group of size � and the
() /2 − 01) remaining leftovers from the previous segment, since
02 > ) /2−01 due to 08 > ) /4. Hence this is computed again with
the group of size (� + ) /2) from the main copy. Then after the
segment, this results in a group of

� + (3·) + 01) − (� + 2 ·) − 02) = ) + 01 + 02

leftover nodes due to the �-type cone, and a group of

(� +) /2) − (� + 02) = ) /2 − 02

leftover nodes due to the�-type cone, besides the further () /2 − 01)
leftovers from the first segment. The () + 01 + 02) leftovers can-
not be on the same processor as the other two groups, since the all
the �-type and �-type cones are assigned to different processors
in every segment. However, the () /2−01) and () /2−02) may be
on the same processor, forming a common group of () − 01 − 02)
leftover nodes; in fact, this is the only possibility that will allow us
to finish the triple cone in the third segment.

In the third segment (where the triple cone corresponds to 03),
there is again a cone of size (� + 2 ·) − 03). We again cannot use
the at most () − 01 − 02) leftovers from the �-cones here, since
even together with a group of size �, this is still only

() − 01 − 02) + � < � +) < � + 2 ·) − 03

nodes, which is once again not enough. Hence for the cone of size
(�+2·) −03), we again need to use the () +01+02) leftovers from
the previous �-cones. Furthermore, recall that all the leftovers are
needed at this point, so the remaining () −01−02) leftovers must
be used on the cone of size (� + 03). In particular, to finish both
the �-cone and the �-cone in time, we need to have

() − 01 − 02) +� ≥ � + 03

() + 01 + 02) + � ≥ � + 2 ·) − 03 ,

which only hold together if we have exactly 01 + 02 + 03 = ) .
This shows that we can only produce a valid schedule for each 3-

segment if we can partition the numbers into groups of 3 that each
sum up to ) . On the other hand, given such a 3-partitioning, the
method above indeed produces a schedule of cost�0; in particular,
note that our method described in Section C.3.3 uses the same pro-
cessor for each �-cone and �-cone, respectively, so it can indeed

use the leftover nodes in the way described above. This completes
the reduction.

C.3.6 Technical details. It remains to discuss some technicalities.
Note that with the exception of final cones, it could still happen

that a cone is not entirely assigned to the same processor. This
does result in extra communication towards the top node, but this
is not always prohibitive, because some processors are idle in given
communication steps, and hence in some cases, they could execute
these extra communications without increasing the cost. We know
that any cone must have strictly less than 3 ·< such outlier nodes

that are assigned to a different processor than the top, otherwise
this already produces a cost of more than �0. However, these few
outlier nodes in the cones could still cause small problems in the
construction: they may allow us to finish the cones (and hence pos-
sibly execute some communication steps) earlier. As a result, the
communication step on the main path could happen several nodes
before E8 , and the workload may be split differently between the
processors assigned to the path and to the attached cone (produc-
ing leftover groups of slightly different size than discussed before).

To prevent this, we consider a further parameter� , and we mul-
tiply the size of each gadget in our construction by a factor � in
the end; in particular, the size of all cones, and the size of each
part [E8 , E (8+1) ) of the critical paths. Note that there can be no left-
overs at all by the end of a 3-segment, and during each 3-segment,
we process only $ (1) different gadgets (9 parts of the path, 9 at-
tached cones, semi-final cones consisting of 15 cones altogether,
in 4 copies; altogether 132). Each of these gadgets can only in-
crease/decrease the number of leftover nodes on any processor by
at most 3·<, by e.g. bringing a communication step slightly earlier,
or using some outliers instead of the processor assigned to a cone.
Hence even if these would add up, the number of leftover nodes on
any processor can increase/decrease by at most 132 ·3 ·<. As such,
if we select� = $ (1)·< with a large enough constant (e.g. 3·132·3),
then these small offsets in group sizes do not allow us to combine
the leftovers in our cones in any other way than described before;
in particular, each side in our inequalities can change by at most
�
3
, while an original difference of 1 now corresponds to � nodes.

As such, even if we have a few outliers in some of the cones, this
does not influence the behavior of the construction.

As for our other parameters, the embedding of 3-partition can
only result in less than 6 ·) further leftover nodes (besides�’s and
�’s) in a given 3-segment. It would be enough to make � larger
than this; however, to emphasize the size difference between the
different kinds of gadgets in our constructions, let us now select
� = < · ) (assuming that < is much larger than 6). To ensure
� > 4 · � + 6 ·) , we choose � = 8 ·�. We then need to ensure
2 ·"0 > " + (4 ·< + 1) · (� + 6 ·) ); since we will have" < "0 +�,
this is satisfied if we ensure"0 > (4·< +2)· (� +6·) ). Since< > 2

and � > 6·) , we can do this e.g. by selecting"0 = 10·< ·�. To have
"0 + � + 6 ·) < " < "0 + �, we then choose" = "0 +� + 7 ·) .
Finally, recall that the size of all gadgets is further increased by
a factor � = $ (<). However, even in this case, the size = is still
polynomial in<.

To ensure that) /2 is an integer, we also assume for convenience
that ) is divisible by 6; otherwise, we can simply multiply all the
08 by 6 to obtain an equivalent 3-partition problem.
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Finally, note that the proof applies not only to the DSmodel, but
also the other BSP variants in Table 3. In particular, broadcasting
offers no advantages in in-trees, and free data movement also does
not affect any of the properties of our construction.

D COMMUNICATION SCHEDULING

We now present our proofs on the hardness of the communication
scheduling problem.

D.1 CS with 2 processors

We begin by showing that with % = 2 processors, there is a rela-
tively simple algorithm to find the optimal communication sched-
ule in polynomial time.

Proof of Lemma 7.2. Consider the following greedy algorithm:
we iterate through the supersteps 1, ..., ( in order. In the current
superstep B , let Λ1,2 denote the set of values D that satisfy the fol-
lowing properties: (i) they were already computed on ?1 before
(c (D) = ?1, g (D) ≤ B), (ii) they are required later on ?2 (there is
(D, E) ∈ � with c (E) = ?2 and g (E) > B), and (iii) they have not been
sent from ?1 to ?2 so far in our algorithm. Furthermore, assume
that this set is organized as a list of values, sorted in increasing or-
der according to the first time they are needed on ?2. That is, if for
two valuesD1, D2 ∈ Λ1,2 it is the successors E1 , E2 on ?2 that have a
minimal g (E1) and g (E2), respectively, with g (E1) < g (E2), then D1
will appear earlier in the list Λ1,2 than D2. Finally, let Λ′1,2 ⊆ Λ1,2

denote the subset of this list that is immediately needed in super-
step (B + 1), i.e. ∃ (D, E) ∈ � with c (E) = ?2 and g (E) = B + 1; note
that these values appear at the beginning of Λ1,2 . Symmetrically,
let Λ2,1 and Λ

′
2,1 denote the same values in the other direction.

We assume w.l.o.g. that |Λ′
1,2 | ≥ |Λ

′
2,1 |. Our greedy algorithm

will send exactly �2><<
(B)

= |Λ′
1,2 | values from ?1 to ?2 in super-

step B : the values contained in Λ
′
1,2 . In the other direction, from ?2

to ?1, we will send the first�2><<
(B) of values ofΛ2,1 according to

its ordering (but of course at most |Λ2,1 | values if |Λ2,1 | < �2><<
(B) ).

Note that this indeed results in a communication cost of�2><<
(B)

for the superstep, and all the values required in the computation
phase of superstep (B + 1) are indeed transmitted.

The algorithm clearly runs in polynomial time. The number of
supersteps is at most =, and in each superstep, we can update the
lists Λ1,2 and Λ2,1 in at most $ (=) time.

It remains to show that this algorithm indeed finds the optimal
communication schedule. In any concrete superstep B , consider the
values communicated by the greedy method above; we show that
there is at least one optimal solution that executes these commu-
nication steps in superstep B . The optimality of our algorithm then
follows from an induction in B .

Given a concrete superstep B , let Γ denote the best solution among
those that send the same values in superstep B as our greedy algo-
rithm, and assume for contradiction that there is an alternative
solution Γ

′
1
that results in a lower total cost. Firstly, let us define

Δ = �2><<
(B)−max( |Λ′

1,2 |, |Λ
′
2,1 |) in Γ

′
1
. IfΔ is positive, then let us

take Δ arbitrary values from bothΛ1,2\Λ
′
1,2 and Λ2,1\Λ

′
2,1 , and in-

stead of communicating them in superstep B , let us assign the same
communication steps to superstep (B + 1). Note that by the defini-
tion of Λ′, none of these values are required in superstep (B + 1),

so we can indeed do this. Furthermore, this modified solution Γ
′
2

reduces�2><<
(B) by exactly Δ, and only increases �2><<

(B+1) by
Δ at most, so the total cost does not increase either.

Furthermore, it is clear that the values Λ′
1,2 and Λ′

2,1 need to be
transmitted in superstep B . Let E1 , ..., E: denote the further values
that are sent by our algorithm from ?2 to ?1 in superstep B ; recall
that these are the first : = |Λ′

1,2 | − |Λ
′
2,1 | values in Λ2,1 \ Λ

′
2,1.

Assume that Γ′
2
transfers the values Ê1, ..., Ê:′ from ?2 to ?1 in

superstep B instead; assume that these are ordered according to
the same rule as in our Λ lists. Note that : ′ ≤ : , since Γ

′
2
has

�2><<
(B)

= max( |Λ′
1,2 |, |Λ

′
2,1 |). Now let us further modify Γ′

2
into

Γ
′
3
as follows: for all 8 ∈ [: ′], we take the communication steps in

Γ
′
2
where E8 and Ê8 are sent from ?2 to ?1, and we exchange these

two steps for every such 8 .
The resulting Γ′

3
is still a valid communication schedule. On the

one hand, sending E8 instead of Ê8 in superstep B is naturally a valid
step, as also demonstrated by solution Γ. On the other hand, both
the E8 and the Ê8 values are ordered according to the time they are
required on ?1, so Ê8 is always required at a later (or the same)
superstep as E8 ; this means that sending Ê8 in the step where orig-
inally E8 was sent is also a valid step. Moreover, Γ′

3
has the same

communication cost as Γ′
2
, since the number of values communi-

cated in each superstep remains unchanged. Finally, if Γ′
3
happens

to have : ′ < : , we can alsomove the communication steps sending
the (: ′ + 1)-th, ..., :-th node of Λ2,1 (from ?2 to ?1) to superstep B ,
without increasing �2><<

(B) .
This ensures that Γ′

3
now indeed transfer the same values in su-

perstep B as Γ. However, Γ′
3
was obtained from Γ

′ without increas-
ing the total cost; this contradicts the optimality of Γ. �

D.2 NP-hardness in DB, FS and FB

Next we show that in general, the CS problem is NP-hard if com-
munication happens according to the DB, FS or FB models.

Proof of Theorem 7.3. In these models, NP-hardness can be
shown through a reduction from a special case of the 3D-matching
problem. In this problem,we are given three classes of nodes- ,. ,/
of the same size # = |- | = |. | = |/ |, and a set H of " triplets
(G,~, I) ∈ - × . × / , and the question is whether we can find #

triplets in H that form an exact cover, i.e. they are disjoint (and
hence they cover - , . and / entirely). This problem is known to
be NP-complete [12].

Given a 3D-matching problem, we convert it into a CS problem
on % =7 or % =8 processors, depending on the model. Three of the
processors, named ?- , ?. and ?/ , will correspond to the classes
- ,. ,/ and another three processors ?

-̃
, ?

.̃
and ?

/̃
will represent

them in reverse ordering (to be discussed later). We will also have
a source processor ?0 which needs to send values to all these six
processors, without making the communication cost too large. In
the FS model, we also have an auxiliary processor ?0 , and instead
of sending the values directly, ?0 will need to send them to ?0 first,
and ?0 will need to relay them to the remaining processors.

As a general tool in our construction, for any superstep B , we
can add a node E that is assigned to some processor ?1 in super-
step B , and draw an edge from this to another node that is assigned
to some other processor ?2 in superstep (B+1). This node can only
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be communicated form ?1 to ?2 in superstep B ; as such, it does not
have any degree of freedom in our CS problem, and indeed can
be understood as a fixed cost that contributes 1 to both�B4=C (B,?1)

and�A42 (B,?2) . By adding a set of these immediately needed values
between any pair of processors, we can essentially ensure that we
have a desired fixed value for �B4=C (B,?) and �A42 (B,?) for any spe-
cific ? or B , adding up to a fixed unavoidable communication cost
over the whole schedule. The main idea of our construction is to
convert the input 3D-matching to aCS problemwhere themaximal
allowed cost is set to this fixed communication cost. Hence intu-
itively speaking, the solvability of our CS problem will depend on
whether the remaining (not fixed) communication steps in our con-
struction can be scheduled in such a way that the communication
cost is not increased above this fixed cost in any superstep; in other
words, for the communication steps that can be scheduled flexibly,
we need to find appropriate supersteps where the �B4=C (B,?) and
�A42

(B,?) values of the sending and receiving processors are not
yet “saturated”, i.e. they can both be increased without increasing
the total cost �2><<

(B) in the superstep.
The DAG schedule in our CS construction will be split into two

parts: an initialization part and a matching part, consisting of (1
and (2 supersteps, respectively. Let us denote the nodes of- ,. and
/ by G8 , ~8 and I8 , respectively, for 8 ∈ [# ]. For each specific triple
(G8 , ~ 9 , I: ) ∈ H , a construction will have a distinct node D8, 9,: that
is assigned to processor ?0 and superstep 1 that represents this
specific triple. We then draw an edge from this node D8, 9,: to an
arbitrary node in the following processors/supersteps:

• processors ?- , ?. and ?/ in superstep (1 + 6 · 8 + 1,

• processors ?
-̃
, ?

.̃
and ?

/̃
in superstep (1 + 6 · (# + 1− 8) + 1,

setting (2 = 6 · # .
Intuitively, the initialization part will allow us to transfer"−#

(but not more!) of the values D8, 9,: to all the six other processors
where they are required, already until superstep (1, without in-
creasing the communication cost in any of the supersteps 1, ..., (1.
The specific details of how this is done depends on the concrete
model. This will mean that in the matching part, we need to trans-
fer the remaining # values D8, 9,: to the six other processors with-
out increasing the communication costs in steps (1 + 1, ..., (2. Our
construction will ensure that this is possible if and only if the #
triplets corresponding to these # remaining nodes D8, 9,: form an
exact cover of - ,. ,/ . As such, our construction will allow a com-
munication schedule with the fixed immediate costs if and only if
the original 3D-matching problem is solvable.

The construction details for thematching part are identical in all
of the models. In each superstep B ∈ {(1 +1, ..., (2}, we ensure that
�B4=C

(B,?)
= 1 and �A42 (B,?) = 1 for all of the processors, with two

exceptions: firstly, we have �B4=C (B,?0) = 0 for ?0, and secondly,
we have �A42 (B,?

′)
= 0 for another processor ? ′ that depends on

the remainder of B when divided by 6; in particular, we set

• �A42
(B,?- ) = 0 if B − (1 gives 1 modulo 6,

• �A42
(B,?. ) = 0 if B − (1 gives 2 modulo 6,

• �A42
(B,?/ ) = 0 if B − (1 gives 3 modulo 6,

• �A42
(B,?

-̃
)
= 0 if B − (1 gives 4 modulo 6,

• �A42
(B,?

.̃
)
= 0 if B − (1 gives 5 modulo 6,

• �A42
(B,?

/̃
)
= 0 if B − (1 gives 0 modulo 6.

This can indeed be easily implemented with fixed communication
steps in any superstep B : we simply add an “imaginary” edge from
?0 to the desired target node ? ′, we arbitrarily extend this to a
perfect matching (i.e. each processor sends a single fixed value to
another processor), and then discard this imaginary edge. This re-
sults in a set of fixed communications where in terms of costs, we
indeed have �B4=C (B,?) = 1 and �A42 (B,?) = 1 for all of the proces-
sors, with the exception of �B4=C (B,?0) = 0 and �A42 (B,?

′)
= 0. As

such, in any of the models, there is only one possible communica-
tion step in superstep B that does not increase the communication
cost: sending a single value from ?0 to ? ′.

Now assume that at the end of the initialization part, there are
(" − # ) of the values D8, 9,: that are already available on all pro-
cessors, and the remaining # values are still available on ?0 only.

Lemma D.1. The remaining# values D8, 9,: can be communicated

without increasing the communication costs if and only if the corre-

sponding # triplets form an exact cover.

Proof. This is not hard to see: our construction allows us to
send exactly one value from ?0 to all other processors in the first 6
steps, one in the second 6 steps, and so on. As such, if we have an
exact cover, then this contains all of G1 ,~1 and I1 exactly once, and
hence there is a single value among the D8, 9,: that is needed on ?-
in superstep (1+7, a single value that is needed on ?. in superstep
(1 + 7, and a single value that is needed on ?/ in superstep (1 + 7;
we can transfer these from ?0 in supersteps (1+1, (1+2 and (1+3,
respectively. Similarly, the exact cover contains all of G# , ~# and
I# exactly once, so for ?

-̃
, ?

.̃
and ?

/̃
, there is a single value that

is needed on these processors in superstep (1 + 7; we can transfer
these from ?0 in supersteps (1 + 4, (1 + 5 and (1 + 6.

The same technique can be continued for the rest of the values:
all of G2 , ~2, I2 and G (#−1) , ~ (#−1) , I (#−1) are contained in the
cover exactly once, so apart from the values already sent, there is
exactly one more value that is required on all six receiving proces-
sors by superstep (1 + 13. These values can be transferred in steps
(1 + 7, ..., (1 + 12. Following this pattern, we can communicate all
the values by the time they are required, without increasing the
communication cost in any of the supersteps.

For the reverse direction, assume that the values can be commu-
nicated without increasing the cost; this implies two things about
the original triplets. Firstly, due to processor ?- , we know that
our triplets contain G1 at most once, the nodes in {G1, G2} at most
twice, the nodes in {G1, G2, G3} at most three times, and so on. The
same holds for the nodes ~8 and I8 . Furthermore, due to processor
?
-̃
, our triplets contain G# at most once, the nodes {G# , G (#−1) }

at most twice, the nodes {G# , G (#−1) , G (#−2) } at most three times,
and so on (similarly for ~8 and I8 ).

One can observe that in order for # triplets to satisfy these con-
ditions, they indeed need to form an exact cover. In particular, if the
triplets are not an exact cover, then there must a lowest-indexed
node G8 (w.l.o.g. we assumed it is in class- ) which is not contained
in the triplets exactly once (i.e. it either does not appear at all, or
it appears more than once). If G8 appears more than once, then
the nodes {G1, ..., G8 } appear altogether more than 8 times, which
is a contradiction. On the other hand, if G8 does not appear at all,
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then the nodes {G (8+1) , ..., G# } appear altogether more than (# −8)
times, which is again a contradiction. �

It remains to discuss the initialization part; we first discuss it
for the broadcast models �� and ��. In these models, the initial-
ization will consist of (1 = " − # supersteps, and each will allow
us to transfer a single value from ?0 to all the remaining 6 pro-
cessors. For this, we simply need to add a single fixed value that
has to be sent from e.g. ?- to ?0 in each superstep B ∈ [(1]; this
sets the communication cost to �2><<

(B)
= 1, and ensures that

?0 can only send exactly one value in each of these supersteps
without increasing the cost. Since the remaining six processors all
have�A42 (B,?) = 0 so far, they can all receive this broadcasted value
without increasing the cost. As such, by the end of the initialization,
?0 can only send (" −# ) of the values, and these can be received
by all other processors. Note that while it would also be possible to
communicate between the remaining six processors without a cost
increase, this does not offer any advantage, since the only values
that have left processor ?0 up to a given superstep B are already
known by all the six processors by superstep B .

In the �( model, we ensure the same behavior using an auxiliary
processor ?0 and altogether (1 = 7 · (" −# ) supersteps. Similarly
to the matching part, we ensure in each of these (1 supersteps that
�2><<

(B)
= 1, and there is only a single processor that can send

a value and a single processor that can receive a value without
increasing the cost. In particular, in the first (" − # ) supersteps,
we ensure that �B4=C (B,?) = 1 and �A42

(B,?)
= 1 for all ? ∈ [%],

with two exceptions: we have �B4=C (B,?0) = 0 and �A42
(B,?0 ) = 0.

This ensures that the only allowed communication step in the first
(" − # ) supersteps is to send a single value from ?0 to ?0 . Then
for the next 6 · (" − # ) supersteps, we again set �B4=C (B,?) = 1

and �A42
(B,?)

= 1 for all ? ∈ [%], with two exceptions: we set
�B4=C

(B,?0) = 0 for ?0 , and we set �A42 (B,?
′)

= 0 for another pro-
cessor ? ′ in a periodic fashion again:

• �A42
(B,?- ) = 0 if B − (" − # ) gives 1 modulo 6,

• �A42
(B,?. ) = 0 if B − (" − # ) gives 2 modulo 6,

• �A42
(B,?/ ) = 0 if B − (" − # ) gives 3 modulo 6,

• �A42
(B,?

-̃
)
= 0 if B − (" − # ) gives 4 modulo 6,

• �A42
(B,?

.̃
)
= 0 if B − (" − # ) gives 5 modulo 6,

• �A42
(B,?

/̃
)
= 0 if B − (" − # ) gives 0 modulo 6.

This ensures that for all other six processors ? ′, there are exactly
(" − # ) rounds where the only allowed operation is to send a
single value from ?0 to ? ′.

This implies that in the initialization part, ?0 will never be able
to send a value to any of the six processors without increasing cost;
instead, it has to send the values through ?0 . In the first (" − # )
rounds, ?0 can communicate any chosen (" −# ) values to ?0 , but
not more; then ?0 can relay these to the remaining six processors
in the next 6 · (" − # ) rounds without increasing cost.

We note that the reason why the same proof strategy does not
work for the DS model is in this initialization part: the step of ?0
sending a value to e.g. ?- and ?. are independent in the DS model,
and hence there is no straightforwardway to ensure that ?0 indeed
has to send (" −# ) complete triplets to the remaining processors,

and has no option to “break them up” and only send the desired
parts of each triplet.

Altogether, this completes the reduction: our construction shows
that in the resulting CS problem, there only exists a communica-
tion schedule with the predefined cost (" + 5 ·# in the DB and FB
models, or 7 ·" − # in the FS model) if the original 3D-matching
problem is solvable, i.e. if there are # triplets that form an exact
cover. �

D.3 With communication weights

On the other hand, with communicationweights, it is more straight-
forward to show that the problem is already NP-hard for % =2.

Proof of Lemma 7.4. Consider the 3-partition problemwith num-
bers 01, ..., 03·<′ . We build a DAG that is split into (<′ + 1) super-
steps. Let us place a node into all (<′ + 1) supersteps on both ?1
and ?2 so that they are non-empty; we will refer to this node on
processor ? in superstep B as E?,B . To make the choice of c and g

more reasonable, we can also draw an edge form E?8 ,B to E?8 ,(B+1)
for all 8 ∈ {1, 2}, B ∈ [<′].

Then for all B ∈ [<′], we draw an edge from E?1,B to E?2,(B+1) ,
and choose a communication weight of F2><< (E?1,B ) = ) . Since
the value of E?1,B can only be communicated from ?1 to ?2 in su-

perstep B , this will ensure that �B4=C (B,?1) = ) for all B ∈ [<′].
On the other hand, we add < distinct nodes D1, ..., D< to pro-

cessor ?2 and superstep 1, we draw an edge from each of them to
E?1,(<′+1) , and we set the communication weights of these nodes
to F2><< (D8) = 08 . This implies that these nodes can be freely
transferred in any of the supersteps 1, ..., <′ from ?2 to ?1. How-
ever, in order to not increase the cost �2><<

(B) above ) for any
B ∈ [<′], we must ensure that we communicate a set of values
in each superstep that have total weight at most ) . Since the total
weight of the nodes is<′ · ) , this means that we have to transfer
a total weight of exactly ) from ?2 to ?1 in each superstep.

As such, a schedule with communication cost<′ ·) exist if and
only if the original 3-partition problem was solvable, which com-
pletes the reduction. �

D.4 Comments on latency

So far, we have considered the CS problemwithout latency; indeed
since the number of supersteps is already decided in this setting,
any communication schedule induces the same latency cost in to-
tal, so this does not influence the relative quality of the different
solutions.

However, alternatively, we might be interested in a variant of
the CS problem where if there are no communications happening
in supersteps B , then this latency cost is not added to the total (and
hence we essentially have the option to merge supersteps B and
(B + 1) by an appropriate communication schedule, and save this
latency cost). We note that the hardness results above also carry
over to this setting with latency. In particular, the constructions in
Sections D.3 and D.2 ensure that there is a fixed communication
happening in each superstep, so the total latency is equal in all so-
lutions anyway. On the other hand, the greedy approach in Section
D.1 can easily becomes suboptimal if ! > 0, so Lemma 7.2 is more
challenging to extend to this case.
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E ILP REPRESENTATION

This section discusses the ILP representation in Proposition 8.1.

E.1 ILP formulation details

The main idea of the ILP representation has already been outlined
in Section 8. The binary variables compE,?,B allow us to indicate
whether E was computed on processor ? in the computation phase
of superstep B . For each E ∈ + , we add a linear constraint

∑

? ∈[% ]
B∈[( ]

compE,?,B = 1

to ensure that each node is indeed assigned to exactly one proces-
sor and superstep. This constraint can be relaxed to an inequality
(the sum needs to be ≥ 1) to address the case when duplication is
also allowed. Note that this also allows a node to be computedmul-
tiple times on the same processor, but this will never happen in an
optimal solution. Alternatively, if we wish to specifically exclude
this case, we can add further constraints for each fixed ? to ensure
that the sum over all B ∈ [(] is at most 1.

On the other hand, the binary variables presE,?,B indicatewhether
processor ? is already aware of the value of E at the end of the com-
putation phase of superstep B . As mentioned before, in case of e.g.
the broadcast models, the correctness of these variables can be en-
sured with the condition

presE,?,B ≤ presE,?,(B−1) + compE,?,B + recE,?,(B−1)

for each (E, ?, B) ∈ + × [%] × [(]. These constraints ensure that
if presE,?,B = 1, then at least one of presE,?,(B−1) , compE,?,B and
recE,?,(B−1) must also be 1, i.e. the variable was already present on
? before, or it was computed in the computation phase of superstep
B , or received in the communication phase of superstep (B −1). For
the special case of B = 1, we need to simplify the condition to
presE,?,B ≤ compE,?,B .

A similar constraint on the presence variables can also be ap-
plied in the DS model with the variables commE,?1,?2,B ; in particu-
lar, we need to change the constraint to

presE,?,B ≤ presE,?,(B−1) + compE,?,B +
∑

?′∈[% ]
?′≠?

commE,?′,?,(B−1) .

These variables already provide a straightforward way to en-
code the precedence constraints in the DAG: a node E can only
be computed on ? in superstep B if all of its predecessors are also
available on ? by the end of the computation phase of superstep B .
To express this, we can add a constraint compE,?,B ≤ presD,?,B for
all (D, E) ∈ � and all ? ∈ [%], B ∈ [(]; with our binary variables,
this ensures that if we have compE,?,B = 1, then we must also have
presD,?,B = 1.

If we introduce separate integer variables for all�F>A:
(B,?) and

�F>A:
(B) , then the work costs are also easy to compute from the

variables compE,?,B . We can simply write

�F>A:
(B,?)

=

∑

E∈+

compE,?,B

to obtain the work cost on a specific superstep, and then add a
constraint �F>A:

(B) ≥ �F>A:
(B,?) for all ? ∈ [%], B ∈ ( . This en-

sures that �F>A:
(B) will indeed be larger than the work cost on

each specific processor in B , and in the optimal solution, it will
take the value of exactly the maximum. Note that this expression
of work costs is straightforward to extend with work weights as
coefficients in these linear constraints:

�F>A:
(B,?)

=

∑

E∈+

FF>A: (E) · compE,?,B .

Finally, the analysis of communication costs and constraints de-
pends on the concrete communication model. As discussed, we use
the binary variables sentE,?,B and recE,?,B to capture communica-
tion in theDB and FBmodels, and the binary variables commE,?1,?2,B

to capture communication in the FS model (the DS model will be
discussed separately later). The correctness of the communication
steps (i.e. that processors only send values that they already pos-
sess) can be ensured by the constraints sentE,?,B ≤ presE,?,B for all
E ∈ + , ? ∈ [%], B ∈ [(] in the broadcast models. The same thing
can be ensured by commE,?,?′,B ≤ presE,?,B in FS, for all E ∈ + ,
?, ? ′ ∈ [%], B ∈ [(]. Furthermore, in the broadcast models, wemust
ensure that if recE,?,B = 1, then we have sendE,?′,B = 1 for some
other ? ′, i.e. some processor is actually broadcasting the value E ;
this can be done by adding the constraint

recE,?,B ≤
∑

?′∈[% ]
?′≠?

sentE,?′,B

for each (E, ?, B) ∈ + × [%] × [(].
Another thing to ensure in the direct transfer models (DS and

DB) is that a value is indeed sent by the processor that computed it.
One simple way to express this is to introduce an auxiliary binary
variable homeE,? for all E ∈ + , ? ∈ [%] to indicate whether E was
computed on ? ; for this, we can simply add the constraint

∑

B∈[( ]

compE,?,B = homeE,?

for all E ∈ + , ? ∈ [%]. Then besides requiring sentE,?,B ≤ presE,?,B

in theDBmodel, we can also add the constraint sentE,?,B ≤ homeE,?

(for all E ∈ + , ? ∈ [%], B ∈ [(]).
The communication costs �B4=C (B,?) , �A42 (B,?) , �2><<

(B,?) and
�2><<

(B) can again be expressed with separate variables and some
simple constraints. The relations between these variables are natu-
rally ensured by �2><<

(B,?) ≥ �B4=C
(B,?) , �2><<

(B,?) ≥ �A42
(B,?)

and �2><<
(B) ≥ �2><<

(B,?) for all ? ∈ [%], B ∈ [(]. In fact, the
�2><<

(B,?) variables are not even needed as an intermediate step,
we can simply use�2><<

(B) ≥ �B4=C
(B,?) and�2><<

(B) ≥ �A42
(B,?) .

Similarly to the case of work costs, the constraints formally only
ensure that �2><<

(B) is higher than these values, but in the opti-
mal solution it is always set exactly to their maximum.

In the broadcast models, we further need to add

�B4=C
(B,?)

=

∑

E∈+

sentE,?,B and �A42
(B,?)

=

∑

E∈+

recE,?,B

for all ? ∈ [%], B ∈ [(]. In the FS model, we need to add

�B4=C
(B,?)

=

∑

E∈+
?′∈[% ]
?′≠?

commE,?,?′,B

28



DAG Scheduling in the BSP Model

and
�A42

(B,?)
=

∑

E∈+
?′∈[% ]
?′≠?

commE,?′,?,B

for all ? ∈ [%], B ∈ [(]. Once again, these constraints can be
easily extended with node-based communication weights (or even
edge-based ones in FS) by adding them as simple coefficients: for
instance, the constraint on �B4=C

(B,?) in the broadcast models be-
comes

�B4=C
(B,?)

=

∑

E∈+

F2><< (E) · sentE,?,B .

.
With the cost variables implemented, the objective function of

the linear program can be naturally expressed as the actual BSP
objective function. In the simpler case of no latency (! = 0), the
objective is simply to minimize

∑

B∈[( ]

�F>A:
(B) + 6 ·�2><<

(B) .

The optimal ILP solution to this problemwill naturally provide the
optimal BSP schedule for our DAG.

Extending this formulation with latency requires an extra tech-
nical step: we introduce a binary variable usedB for each superstep
B ∈ [(] to indicate if there is indeed some communication happen-
ing in the communication phase of superstep B . We can set this
variable to the correct value by adding the constraints

usedB ≥ sentE,?,B

in the broadcast models for all (E, ?, B) ∈ + ×[%]× [(], or by adding

usedB ≥ commE,?,?′,B

for all E ∈ + , ?, ? ′ ∈ [%], ? ≠ ? ′, B ∈ [(] in the FS model. This then
allows us to modify the ILP objective to minimizing

∑

B∈[( ]

�F>A:
(B) + 6 ·�2><<

(B) + ! · usedB .

Note that this extra technical step in case of latency is essentially
required because the optimal number of supersteps is not known
in advance; as such, the straightforward way to ensure that we
are not excluding the optimal solution is to select ( = =, and run
the ILP solver on the formulation obtained from this choice. If a
solution in fact uses ( < = supersteps, then the natural way to
represent this is to number these supersteps consecutively from 1

to ( . However, there is no straightforward way to encode this in
the ILP representation, and hence solutions with ( < = supersteps
can be represented in multiple different ways in our ILP, possibly
leaving an arbitrary subset of the supersteps {1, ..., =} empty, or
having consecutive supersteps where no communication happens
at all (and hence they could be merged into a single superstep in
the natural solution). The usedB variables ensure that in case of
latency, we charge no extra cost for these unnatural representa-
tions. We point out that in practice, an ILP-solver based approach
might benefit from more sophisticated search strategies to find the
optimal ( value.

Finally, let us discuss communication in theDSmodel separately.
As mentioned before, a naive implementation could again use the
variables commE,?1,?2,B similarly to FS, and add extra constraints
commE,?,?′,B ≤ homeE,? similarly to DB; however, this increases

the number of variables to $ (= · %2 · () in this model, too. Instead,
consider the following more sophisticated approach. Since the DS
model only allows direct transfer, the variables recE,?,B in fact al-
ready determine the communications happening in superstep B ,
since each variable can only be sent from a single processor. As
such, we can again apply the binary variables recE,?,B , and besides
these, we also introduce a positive integer variable senttimesE,?,B ,
which counts the number of times E is sent by processor ? in the
communication phase of superstep B . Firstly, we can add the con-
straints

senttimesE,?,B ≤ ? · homeE,?

for all (E, ?, B) ∈ + × [%] × [(] to ensure that senttimesE,?,B = 0 if E
is not computed on ? , and at most ? otherwise. More importantly,
we add the constraints

senttimesE,?,B + ? · (1 − homeE,? ) ≥
∑

?′∈[% ]
?′≠?

recE,?′,B

for all (E, ?, B) ∈ + × [%] × [(]. If homeE,? = 0, then this constraint
has no effect: since ? ·(1−homeE,? ) = ? , it is satisfied for any choice
of senttimesE,?,B and recE,?′,B . However, if homeE,? = 1, then the
constraint ensures that senttimesE,?,B must be at least as large as
the number of processors receiving E in superstep B (and there is
no motivation to increase it any larger in a reasonable optimum).
Given these variables, we can use the alternative definition

�B4=C
(B,?)

=

∑

E∈+

senttimesE,?,B

for all ? ∈ [%], B ∈ [(] to obtain the correct communication cost in
the DSmodel. Finally, note that these variables also result in minor
changes for the remaining communication constraints in the DS
model: to ensure that we only communicate values that are already
available, we now need to use senttimesE,?,B ≤ ? · presE,?,B .

Altogether, the ILP formulations above use$ (= · % · () variables
in the DS, DB and FB models, and $ (= · %2 · () variables in the
FS model. Note, however, that reducing the number of variables in
the DSmodel also has a slight drawback. In particular, the formula-
tions in the DB, FS and FB models ensure that the vast majority of
variables are binary, and there are only$ (% · () variables (for cost
measurement) that can take arbitrary integer values. In contrast
to this, when introducing the senttimesE,?,B variables into the DS
model, the number of non-binary variables increases to$ (= ·% ·().
However, recall that senttimesE,?,B is in fact also restricted to the
integer interval {0, ..., %}, so its domain is also not significantly
larger when % is a small constant.

The number of linear constraints, on the other hand, is dom-
inated by the precedence constraints in the DAG in most cases,
which result in$ ( |� | ·% ·() constraints. In particularly sparse (non-
connected) DAGs, we might actually have |� | < =, in which case
the remaining constraints become dominant; hence more formally,
the number of constraints in the broadcast models is

$ ((= + |� |) · % · () .

The only exception to this is the FS model, where we also use$ (= ·
%2 · () constraints to ensure the correctness of the communication
steps; hence in this model, the number of constraints is

$ ((= · % + |� |) · % · () .

29



Pál András Papp, Georg Anegg, and A. N. Yzelman

E.2 Brief overview of ILPs for other models

We note that multiple methods have been studied before to model
scheduling problems as an ILP; some overviews are available in
e.g. [1, 20]. These works often consider other variants of the DAG
scheduling problem; however, the same general techniques can
sometimes be adapted to different model variants.

In particular, the straightforward ILP representation for classi-
cal models is a time-indexed formulation where similarly to our
ILP above, there is a variable compE,?,C to indicate if ? was com-
puted on ? in time step C . This allows for a simple expression of
the constraints, but the number of variables scales with the maxi-
mal possible makespan =, or even the sum of work weights in the

weighted case. This can be significantly larger than the factor ( in
our representation.

For some scheduling problems, e.g. so-called resource-constrained
scheduling, this method also allows a formulation that does not
scale with % . However, in case we have work weights, even such a
formulation can require $ (= ·

∑
E∈E FF>A: (E)) variables, whereas

in our ILP, the number of variables does not scale with the weights
at all. There are also more sophisticated representations, e.g. the
event-based representation of [20],which only requires$ (=2) vari-
ables even in case of work weights; it might be possible to also
adapt these techniques to classical scheduling models. However,
even $ (=2) can be a higher than the number of variables we re-
quire in our ILP, e.g. if the number of supersteps is relatively small
(i.e. % · ( ≤ =), for example, due to a relatively high latency !.
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