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Abstract. We study the problem of scheduling an arbitrary compu-
tational DAG on a fixed number of processors while minimizing the
makespan. While previous works have mostly studied this problem in
fairly restricted models, we define and analyze DAG scheduling in the
Bulk Synchronous Parallel (BSP) model, which is a well-established par-
allel computing model that captures the communication cost between
processors much more accurately. We provide a taxonomy of simpler
scheduling models that can be understood as variants or special cases of
BSP, and discuss how the properties and optimum cost of these models
relate to BSP. This essentially allows us to dissect the different building
blocks of the BSP model, and gain insight into how these influence the
scheduling problem.
We then analyze the hardness of DAG scheduling in BSP in detail. We
show that the problem is solvable in polynomial time for some very simple
classes of DAGs, but it is already NP-hard for in-trees or DAGs of height
2. We also prove that in general DAGs, the problem is APX-hard: it
cannot be approximated to a (1 + ϵ)-factor in polynomial time for some
specific ϵ > 0. We then separately study the subproblem of scheduling
communication steps, and we show that the NP-hardness of this problem
depends on the problem parameters and the communication rules within
the BSP model. Finally, we present and analyze a natural formulation of
our scheduling task as an Integer Linear Program.
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1 Introduction

The optimal scheduling of complex workloads is a fundamental problem not only
in computer science, but also in other areas like logistics or operations research.
In a computational context, the most natural application of scheduling is when
we have a complex computation consisting of many different subtasks, and we
want to execute this on a parallel (multi-processor or multi-core) architecture,
while minimizing the total time required for this. Unsurprisingly, this topic has
been extensively studied since the 1960s, and has gained even more importance
recently with the widespread use of manycore architectures.

In these scheduling problems, a computational task is represented as a Di-
rected Acyclic Graph (DAG), where each node corresponds to an operation or
subtask, and each directed edge (u, v) indicates a dependency relation, i.e. that
the processing of node u has to be finished before the processing of node v be-
gins, since the output of operation u is needed as an input for operation v. This
DAG model of general computations is not only prominent in scheduling, but
also in further topics such as pebble games.

However, from a complexity-theoretic perspective, the scheduling of general
DAGs is already a hard problem even in very simple settings, e.g. even in models
that heavily simplify or completely ignore the communication costs between
processors, which is the main bottleneck in many computational tasks in practice.
Due to this, previous theoretical works have mostly focused on analyzing the
complexity of scheduling in these rather simple models, and while more realistic
models were sometimes introduced, the theoretical properties of scheduling in
these more realistic models received little attention.

On the other hand, the parallel computing community has developed far
more advanced models to accurately quantify the real cost of parallel algorithms
in practice. One of the most notable is the Bulk Synchronous Parallel (BSP)
model, which is still relatively simple, but provides a delicate cost function that
captures the volume of communicated data and the synchronization costs in a
given parallel schedule. BSP (and similar models) are fundamental tools for eval-
uating and comparing concrete practical implementations of parallel algorithms.
However, previous theoretical works on BSP only focus on finding and analyzing
parallel schedules for specific algorithms, and do not study BSP as a model for
scheduling general DAGs, i.e. an arbitrary computational task.

Our goal in this paper is to bridge this gap between theory and practice
to some extent, and understand the fundamental theoretical properties of DAG
scheduling in the BSP model. This more detailed model results in a more complex
scheduling problem with some entirely new aspects compared to classical models;
as such, understanding its key properties is a crucial step towards designing
efficient parallel schedules for computations in practice. Our hope is that our
insights inspire a new line of work on the theoretical study of scheduling in
more advanced parallel computing models that are developed and applied on
the practical side. More specifically, our main contributions are as follows:
(i) We first define DAG scheduling in the BSP model. We then provide a tax-

onomy of scheduling models from previous works, and show that many of
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these can be understood as a special case of BSP. Analyzing the relations be-
tween these models essentially allows us to gain insight into how the different
aspects of BSP affect the scheduling problem.

(ii) We then analyze the complexity of BSP scheduling, with the goal of under-
standing when (i.e. for which kind of DAGs) it becomes NP-hard. We show
that the problem is still solvable in polynomial time for DAGs that consist of
several connected chains, but it is already NP-hard for slightly more complex
classes of DAGs, such as in-trees or DAGs of height 2.

(iii) We show that for general DAGs, the problem is NP-hard to even approximate
to a (1 + ϵ) factor, for some ϵ > 0. In order words, BSP scheduling is APX-
hard: it allows no polynomial-time approximation scheme unless P=NP.

(iv) We separately analyze the subproblem of scheduling communication steps,
assuming that the rest of the schedule is already fixed. We discuss the com-
plexity of this subproblem for several different variants of BSP.

(v) Finally, we present and analyze a natural formulation of the BSP scheduling
task as an Integer Linear Programming (ILP) problem.

Our main technical contributions are points (ii)–(iv) above; however, the remain-
ing points also provide valuable insight into the problem. The proof details and
some further model discussion are deferred to the full version of the paper [42].

2 Related Work

DAG scheduling is a fundamental problem in computer science, and has been
studied extensively since the 1970s. The first papers considered a simple setting
where communication between processors is free, which essentially corresponds
to the PRAM model. The numerous results in this model include polynomial al-
gorithms for P=2 processors [5,45,14], polynomial algorithms for special classes
of DAGs [15,11,10], hardness results for P=∞ [50,3,25], and results for weighted
DAGs [24,37,4]. The results on some of these topics, e.g. approximation algo-
rithms, are still rapidly improving in recent years [47,28,16,30]. On the other
hand, some basic questions are still open even in this fundamental model: e.g. it
is still not known whether scheduling for some fixed P> 2 is NP-hard.

A more realistic version of this model was introduced in the late 1980s [40,54],
where there is a fixed communication delay between processors. There are also
numerous algorithms and hardness results for this setting, in particular for unit-
length delays [19,21] or infinitely many processors [33,21,38]. The approximabil-
ity of the optimal solution is also a central question in this model that receives
significant attention even in recent years [23,31,8,32,7].

This communication delay model is still unrealistic, as it allows an unlimited
amount of data to be sent in a single time unit. To our knowledge, the only more
sophisticated DAG scheduling model which measures communication volume is
the recently introduced single-port duplex model [39]. However, this model has
not been studied from a theoretical perspective, and in contrast to BSP, it cannot
be extended by some real-world aspects such as synchronization costs.
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There are also numerous extensions of these models with further aspects, e.g.
heterogeneous processors or deadlines for each task [26,27,48,29,9,43].

On the other hand, BSP has been introduced as a prominent model of par-
allel computing in 1990 [51], and studied extensively ever since [34,2,46]. The
model has also found its way into various applications, most notably through
the BSPlib standard library [20] and its different implementations [56,55]. Fun-
damental results on BSP include the analysis of prominent algorithms in this
model [35,36] or the extension of BSP to multi-level architectures [52,53]. How-
ever, the BSP model (and similar models with even more parameters, such as
LogP [6]) have mostly been used so far to analyze the computational costs of
specific parallel implementations of concrete algorithms. In contrast to this, in
our work, we apply BSP as a general model to evaluate the scheduling of any
DAG.

3 Model and Background

Computational tasks are modelled as a Directed Acyclic Graph G, with the set
of nodes (subtasks) denoted by V , and the set of directed edges (dependencies)
by E. We use u and v to denote individual nodes, and n to denote the number
of nodes |V |. An edge (u, v) indicates that subtask u has to be finished before
the computation of subtask v begins. We also use [k] as a shorthand notation
for the integer set {1, ..., k}.

We assume that we have P ∈ O(1) identical processors, and our goal is to
execute all nodes of G on these, while minimizing the total time this takes.

The BSP model. BSP is a very popular model for the design and evaluation
of parallel algorithms. To our knowledge, general DAG scheduling has not been
studied in this model before, but extending the interpretation of BSP to this
setting is rather straightforward.

In contrast to classical models where nodes are assigned to concrete points in
time, the BSP model instead divides the execution of nodes into larger batches,
so-called supersteps. Each superstep consists of two phases, in the following order:

1. Computation phase: each processor may execute an arbitrary number of com-
putation steps, but no communication between the processors is allowed.

2. Communication phase: processors can communicate an arbitrary number of
values to each other, but no computation is executed.

The motivation behind supersteps is to encourage sending data in large batches,
since in practice, communication often has a large fixed cost (e.g. synchroniza-
tion, network initialization) that is independent of data volume.

Formal definition. Let us denote the number of supersteps in our schedule by
S. While S can be freely chosen in a schedule, we provide our definitions for a
fixed S for simplicity. A BSP schedule with S supersteps consists of:
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– An assignment of nodes to processors π : V → [P ] and to supersteps τ : V →
[S]. For simplicity, we introduce the notation H(s,p) = {v ∈ V |π(v) = p,
τ(v) = s} for the set of nodes assigned to processor p and superstep s. We can
imagine the nodes of H(s,p) to be executed in an arbitrary (but topologically
correct) order on p in superstep s.

– A set Γ of 4-tuples (v, p1, p2, s) ∈ V×[P ]×[P ]×[S], indicating that the output
of node v is sent from processor p1 to processor p2 in the communication
phase of superstep s. In this base variant of BSP, we only include p1 in these
4-tuples for clarity, but we always assume p1 = π(v), i.e. the value is sent
from the processor where it was computed.

A valid BSP schedule must satisfy the following conditions:
(i) A node v can only be computed if all of its predecessors are available, i.e.

they were computed on processor π(v) in an earlier (or the same) superstep,
or sent to π(v) before the given superstep. That is, for all (u, v) ∈ E, if
π(u) = π(v) then we must have τ(u) ≤ τ(v), and if π(u) ̸= π(v) then we
must have (u, π(u), π(v), s) ∈ Γ for some s < τ(v).

(ii) We only communicate values that are already computed: if (v, p1, p2, s)∈ Γ ,
then p1 = π(v), and τ(v) ≤ s.

Cost function. The computation phase can be executed in parallel on the dif-
ferent processors, so its cost (the amount of time it takes) in superstep s ∈ [S]
is the largest amount of computation executed on any of the processors. More
formally, the work cost of superstep s (first for a given processor p ∈ [P ], and
then in general) is defined as

Cwork
(s,p) = |H(s,p)| and Cwork

(s) = max
p∈[P ]

Cwork
(s,p) .

Communication costs, on the other hand, are governed by two further prob-
lem parameters: g ∈ N is the cost of communicating a single unit of data, and
L ∈ N is the fixed latency cost incurred by each superstep. BSP assumes that
different values can be communicated in parallel in general, but any processor
can only send and receive a single value in any time unit. As such, BSP consid-
ers the number of values sent and received by processor p in superstep s, and
then defines the communication cost of a superstep (for p, or in general) as the
maximum of these; this cost function is called h-relation. More formally, let

Csent
(s,p) = |{(v, p, p′, s) ∈ Γ}| and Crec

(s,p) = |{(v, p′, p, s) ∈ Γ}|

for some fixed s∈ [S] and p∈ [P ] (over all v∈ V and p′ ∈ [P ]), and then let

Ccomm
(s,p) = max(Csent

(s,p) , Crec
(s,p)) and Ccomm

(s) = max
p∈[P ]

Ccomm
(s,p) .

The cost C(s) of superstep s and the cost C of the entire schedule is defined as:

C(s) = Cwork
(s) + g · Ccomm

(s) + L and C =
∑
s∈[S]

C(s) .
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For an example, consider the BSP schedule shown in Figure 1, and let s=1,
p1 = 1, p2 = 2. Here processor p1 computes 4 nodes, and processor p2 computes
5 nodes, so Cwork

(s,p1) = 4, Cwork
(s,p2) = 5, and Cwork

(s) = max(4, 5) = 5
in the computation phase. In the communication phase, p1 must send a single
value to p2 (so Csent

(s,p1) = Crec
(s,p2) = 1), while p2 must send two values

to p1 (Csent
(s,p2) = Crec

(s,p1) = 2). This implies Ccomm
(s,p1) = Ccomm

(s,p2) =
max(2, 1) = 2, and hence Ccomm

(s) = 2. The total cost of the superstep is
C(s) = 5 + 2 ·g + L. For more details on BSP, we refer the reader to [34,2].

As a scheduling problem. We can now formally define our problem.

Definition 1. Given an input DAG, the goal of BSP scheduling is to find a
feasible BSP schedule (π, τ, Γ ) as described above, with minimal cost C.

In the decision version of the problem, we also have a maximal cost parameter
C0, and we need to decide if there is a BSP schedule with cost C ≤ C0. For
simplicity, we will often focus on the simplest case of L=0.

From a complexity perspective, it is important to note that we consider the
parameters P, g, L to be small fixed constants (properties of our computing ar-
chitecture), and not parts of the problem input. We especially emphasize this for
P , since in contrast to our work, some others assume that P is an input variable
that can be up to linear in n; however, this is unrealistic in most applications,
and also makes the problem unreasonably hard even for trivial DAGs. In general,
both settings (fixed P and variable P ) have been extensively studied before, and
are distinguished by “Pm” and “P ” in the classical 3-field notation [18].

4 Comparison to Other Models

4.1 Taxonomy of Scheduling Models

In the most basic classical scheduling model, nodes are assigned to processors
π : V → [P ] and time steps t : V → Z+, with two simple conditions: ∄u, v ∈ V
with π(u)=π(v), t(u)= t(v)), and ∀(u, v)∈E we have t(u)<t(v). The cost of a
schedule here is simply maxv∈V t(v). A more realistic version of this model also
adds a fixed communication delay g between processors: ∀(u, v)∈E, in case if
π(u) ̸=π(v), we now need to have t(v)>t(u) + g.

BSP has two major differences from this latter commdelay model. Firstly,
commdelay allows a processor to execute computations and communications si-
multaneously, while in BSP, these must happen in separate phases. Moreover,
commdelay implicitly allows any amount of data to be sent from p1 to p2 simul-
taneously, whereas BSP also considers data volume: sending k values from p1 to
p2 takes k times as long as a single value. Previous work has briefly considered
the extension of commdelay with both of these modifications separately:
– The work of [13] considers a variant of commdelay where computation and

communication can only happen in separate phases.
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processor 2, superstep 1

processor 1, superstep 1

proc. 2, sup. 2

proc. 1, sup. 2

Fig. 1: Example BSP schedule for a
DAG. The labelled boxes only rep-
resent the computation phases; the
supersteps itself also consists of the
communication phase that follows.

free comm.

(no cost)

simplified
comm. cost
(any amount
of data in a
single step)

exact
comm. cost
(depends on
data volume)

comp. &
comm.
simulta-
neously

classical
scheduling

[5,45, . . . ]

commdelay
[40,23, . . . ]

single-port
duplex

[39]

comp. &
comm. in
separate
phases

classical
scheduling

[5,45, . . . ]

commdelay
with phases

[13]

BSP
[novel for
DAGs]

Table 1: Taxonomy of DAG scheduling
models. The horizontal axis shows com-
munication cost models, and the vertical
axis shows whether simultaneous compu-
tation and communication is allowed.

– The work of [39] introduces a single-port duplex (SPD) model with communi-
cation volume: a schedule here must also specifically assign the send/recieve
steps to concrete (disjoint) time intervals for each processor.

The summary of these models in Table 1 shows that BSP scheduling indeed fills
a natural place in this taxonomy. Note that in the last column, the difference
between SPD and BSP is in fact twofold. Firstly, BSP assumes that at any
time, a processor can either compute or communicate, but not both. Secondly,
BSP divides the schedule into supersteps, which can be understood as a barrier
synchronization requirement: to send a value v, we first need a point in time
(after computing v) when no processor is computing, to initiate the process of
sending v (and possibly other values). By separating these two properties, we
can extend our taxonomy into Table 2 to include further model variants.
– If global synchronization is required (so we have supersteps), but processors

can compute and communicate simultaneously: the first paper on BSP [51]
implicitly assumes this maxBSP model variant, defining C(s) as the maximum
of Cwork

(s) and g ·Ccomm
(s)+L. In contrast, recent textbooks [2] apply our

definition from Section 3 with a sum. Note that defining maxBSP for general
DAGs requires further consideration, to ensure that the computation and
communication phases of a superstep are indeed parallelizable.

– If processors can only either compute or communicate at a given time, but no
synchronization is needed: one can interpret this as the α−β model [44] with
a choice of α=0, although the definition of this model varies (see Appendix
A.4 of [42]). This allows e.g. p1 and p2 to stop computing and exchange
values, while the rest of the processors keep computing in the meantime.
One natural question regarding this taxonomy is how the optimum costs in

these models (denoted by OPT) relate to each other for a given DAG. Firstly,
note that in any of the models, one of the processors must have a work cost of n

P
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free communication
(no cost)

simplified comm. cost
(any amount of data

in a single step)

exact comm. cost
(cost depends on

data volume)

comp. & comm.
simultaneously

no
sync

classical
scheduling commdelay single-port duplex

sync classical
scheduling

commdelay
with sync points maxBSP

comp. & comm.
separately

no
sync

classical
scheduling

α−β with β=0

(or subset-CD)
α−β with α=0

(or subset-BSP)

sync classical
scheduling

commdelay
with phases BSP

Table 2: Extended table of DAG scheduling models. The vertical axis is split
according to (i) whether computation and communication are allowed simulta-
neously, and (ii) whether barrier synchronization is required for communication.

at least; this provides a lower bound. Moreover, executing the entire DAG on a
single processor (without communication) always yields a valid solution of cost
n, and hence it always gives a factor P approximation of the optimum.

Proposition 1. We have n
P ≤ OPT ≤ n in any of these models.

Next we compare the optimum cost in the two fundamental models, classi-
cal scheduling and commdelay, to the optimum in BSP (denoted by OPTclass,
OPTCD and OPTBSP , respectively, assuming L=0 in BSP). These clearly sat-
isfy OPTclass ≤ OPTCD ≤ OPTBSP . Finding the maximal difference is more
involved; however, note that e.g. Proposition 1 already implies that the optimum
costs in any two models differ by at most a factor P .

Lemma 1. We have OPTBSP ≤ P ·OPTclass for any DAG and parameters
P and g. Moreover, OPTCD ≤ (1 + g) · OPTclass. These bounds are essen-
tially tight: there are DAG constructions with OPTCD

OPTclass
=P , OPTBSP

OPTCD
=P , and

OPTCD

OPTclass
= (1+g−ε) for any ε > 0.

Due to our focus on BSP, we also analyze the relation between the models
in the last column of Table 2. Let us denote their optimum costs by OPTSPD,
OPTmBSP , OPTβ and OPTBSP from top to bottom, again for L = 0. The
restrictiveness of the models implies OPTSPD ≤ OPTmBSP ≤ OPTBSP and
OPTSPD≤OPTβ ≤OPTBSP ; we complement with some further observations.

Theorem 1. For any DAG and parameters P , g, the optimal costs in the models
of the last column can differ by a factor 2 at most, i.e. OPTBSP ≤ 2·OPTSPD.
Moreover, we show DAG constructions that prove (for any ε > 0)

i) a lower bound of (2−ε) for OPTβ

OPTSPD
, OPTBSP

OPTSPD
, OPTβ

OPTmBSP
and OPTBSP

OPTmBSP
,

ii) a looser lower bound of ( 32 − ε) for OPTmBSP

OPTSPD
, OPTBSP

OPTβ
and OPTmBSP

OPTβ
.

On a high level, OPTBSP ≤ 2 ·OPTSPD follows from a simple conversion of
an SPD schedule to BSP. The lower bounds in i) use a construction that allows



DAG Scheduling in the BSP Model 9

to parallelize computation and communication almost perfectly, while ii) uses
a DAG where different processors would ideally always send data at different
times, so requiring barrier synchronization notably increases the optimum.

4.2 Communication Models Within BSP

Even within BSP, there are different options to model the communication rules,
and these seemingly small changes can have a significant effect on the model.

For instance, our base assumed that π(v) = p1 for all (v, p1, p2, s) ∈ Γ for
simplicity, i.e. values are sent from the processor where they were computed.
However, to transfer a value from p1 to p2, one might as well send it from p1
to a third processor p3 first, and then from p3 to p2. Moreover, there are simple
examples where such free data movement between processors can indeed result
in a lower communication cost altogether. Consider the schedule in Figure 2 with
P = 3 processors; this has a node that is computed on p3 in superstep 1, but
later only needed on p1 in superstep 3. With direct transfer, we can send this
data from p3 to p1 in either superstep 1 or 2; however, p1 must already receive
a value in superstep 1, and p3 must send a value in superstep 2, so both options
increase the cost in one of the supersteps. On the other hand, with free data
movement, we can send the value from p3 to p2 in superstep 1, and then from
p2 to p1 in superstep 2, without increasing the cost in either superstep.

Another interesting question occurs when processor p wants to send a single
value v to multiple other processors p1, ..., pk in the same superstep. In our
base model, this requires a separate entry (v, p, pi, s) for all i ∈ [k], and hence
contributes k units to the send cost Csend

(s,p). This is a reasonable assumption
e.g. if the communication topology is a clique, and thus p needs to send this
value over k distinct network links. However, in e.g. a star-shaped communication
topology, it can be more reasonable to only charge a single unit of send cost for
this, i.e. to assume that data transfers are broadcast operations, and their values
can be received by any number of processors.

These options can be combined to form 4 different communication models
within BSP. We name these models in Table 3. Our results in Sections 7 and 8
show that these models can indeed influence some properties of the problem.

5 NP-hardness

Regarding the complexity of BSP scheduling, it is not surprising that the problem
is NP-hard in general DAGs. However, this raises a natural follow-up question,
which has also been studied in simpler models: in which subclasses of DAGs is
the problem still solvable in polynomial time, and when does it become NP-hard?

The simplest non-trivial subclass is chain DAGs, where both the indegree
and outdegree of nodes is at most 1. This subclass has been analyzed in different
scheduling models [12,48], including a proof of NP-hardness in BSP [17] if we
assume a compressed input representation (see [42] for a discussion). We also
consider an extension of this subclass: we say that a DAG is a connected chain
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p3, s=1

p2, s=1

p1, s=1

p3, s=2

p2, s=2

p1, s=2

p3, s=3

p2, s=3

p1, s=3

... ... ... ...

... ... ... ...

... ... ... ...

Fig. 2: An example BSP schedule
where free data movement allows for
a lower communication cost than di-
rect data transfer.

Singlecast Broadcast

Direct
transfer

DS model
CS: open problem

ILP: O(n·P ·S) vars

DB model
CS: NP-hard

ILP: O(n·P ·S) vars

Free data
movement

FS model
CS: NP-hard

ILP: O(n·P 2 ·S) vars

FB model
CS: NP-hard

ILP: O(n·P ·S) vars

Table 3: Communication models within
BSP, and their properties shown in Sec-
tions 7 and 8. Our main results (Theo-
rems 2–5) hold in all of these models.

DAG if it can be obtained by adding an extra source node v0 to a chain DAG,
and drawing an edge from v0 to the first node in every chain. We show that
for these simple classes of DAGs, the optimal BSP schedule can still be found
in polynomial time. The key observation is that the optimal BSP schedule in
chain DAGs always consists of at most P supersteps; this allows us to find the
optimum through a rather complex dynamic programming approach.

Theorem 2. The BSP scheduling problem can be solved in polynomial time in
n for chain DAGs and connected chain DAGs.

On the other hand, it turns out that BSP scheduling already becomes NP-
hard for slightly more complex DAGs. In particular, we consider (i) DAGs with
height only 2, where height is the number of nodes in the longest directed path,
and (ii) in-trees, which are DAGs where every node has outdegree at most 1. We
prove that in these (still relatively simple) classes, the problem is already NP-
hard. Since the scheduling problem is known to be polynomially solvable for these
classes in simpler models (specifically, for in-trees in classical scheduling [15], and
for height-2 DAGs in commdelay [33]), this shows that our more advanced model
indeed comes at the cost of increased complexity.

Theorem 3. BSP scheduling is NP-hard if restricted to DAGs of height 2.

Theorem 4. BSP scheduling is NP-hard if restricted to in-trees.

Proof sketch. The proof of Theorem 3 uses a reduction from k-clique, and can be
understood as an adaptation of the reduction approach for partitioning in [41]
to our setting. Intuitively, the second level of the DAG consists of gadgets rep-
resenting each node of the input graph, while the first level consists of gadgets
representing the edges; each edge gadget is connected to the two incident node
gadgets. Our construction ensures that at most k of the node gadgets can be
assigned to a given processor p without incurring a too large work cost, and that
each edge gadget incurs a communication step exactly if one of its incident node
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gadgets is not assigned to p. With the appropriate cost limit C0, the DAG only
admits a valid schedule if there are k original nodes that induce

(
k
2

)
edges.

Theorem 4 is our most technical proof, requiring P =16 processors. Firstly,
our choice of C0 ensures that we can only have n

P computations on any processor,
and only d communication steps altogether (for some d). Then on the one hand,
our construction contains a large gadget that occupies a single processor p for
the entire schedule (otherwise the communication cost is too high), and d further
gadgets that each need to send a value to p. Any schedule needs to manage these
gadgets carefully to ensure that one of these d values is already available every
time we do a communication step; this ensures that the communications can only
happen at specific times at the earliest. On the other hand, we use critical paths
to ensure that specific nodes need to be computed by a given time step. We then
attach further gadgets to given segments of these paths, which forces us to split
the work between multiple processors (and thus communicate) to satisfy these
deadlines; hence communications must happen at specific times at the latest.
Together, these define the exact times when we need to communicate, otherwise
the cost exceeds C0. Due to this, there is essentially only one way to develop a
valid schedule in our DAG. The underlying reduction then uses the 3-partition
problem with gadgets representing each input number ai, and ensures that it
is only possible to satisfy each communication deadline if the numbers ai are
sorted into triplets that each sum up to a given value.

6 Inapproximability

Given the NP-hardness of the problem, another follow-up question is whether
we can at least approximate the optimal solution in polynomial time. However,
we show that on general DAGs, BSP scheduling is APX-hard: there is a constant
ϵ > 0 such that it is already NP-hard to approximate the optimum cost to a
(1+ ϵ) factor. To our knowledge, for the case of constant P , no similar hardness
results are known for other DAG scheduling problems.

Theorem 5. BSP scheduling is APX-hard: there is a constant ϵ > 0 such that
it is NP-hard to approximate the optimum to a (1+ ϵ) factor, already for P = 2.

Proof sketch. We provide a reduction from MAX-3SAT(B), i.e. maximizing the
satisfied clauses in a 3SAT formula where each variable occurs at most B times;
this is already APX-hard for B ∈ O(1) [49,1]. Our construction consists of a
separate gadget for each clause and each variable of the given 3SAT formula.
On a high level, the variable gadgets contain two separate subgadgets that we
need to assign to the two different processors; this choice corresponds to setting
the variable to true or false in the underlying formula. The clause gadgets then
contain subgadgets corresponding to the 3 literals in the clause, which need to
be assigned according to the truth value chosen in the corresponding variable
gadget. Whenever a clause is unsatisfied, the corresponding gadgets in the sched-
ule incur a slightly higher work cost than a satisfied clause. With this, the total
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cost of the BSP schedule has a Θ(n) term that is proportional to the number of
unsatisfied clauses, which allows us to complete the reduction.

The technical part of the proof is to show that any reasonable schedule in
our DAG is indeed structured as described above, representing a solution of
MAX-3SAT(B). Intuitively, our construction ensures that using any other kind
of subschedule in our gadgets results in a higher work or communication cost.
More formally, we can always apply a sequence of transformation steps to convert
any other BSP schedule into a schedule that represents a valid 3SAT assignment,
while only decreasing the cost of the solution.

7 Problem within a Problem: Communication Scheduling

Since h-relations are a complex communication metric, it is natural to wonder
if the hardness of BSP scheduling lies only within the assignment of nodes to
processors and steps (as in simpler models), or if the scheduling of communi-
cation steps also adds another layer of complexity on this. More specifically,
assume that the nodes are already assigned to processors and supersteps, but
we still need to decide when the values are communicated between the chosen
processors; is this subproblem easier to solve?

Definition 2. In the communication scheduling (CS) problem, π and τ are
already fixed, and we need to find a Γ that minimizes the resulting BSP cost.

We assume that π and τ allow a feasible communication schedule, i.e. ∀(u, v)∈
E, we have τ(u)≤τ(v) if π(u)=π(v), and τ(u)<τ(v) if π(u) ̸=π(v).

As a heuristic approach, one might consider an eager or lazy communication
policy, i.e. to communicate each value immediately after it is computed (eager),
or only in the last possible superstep before it is needed (lazy). However, a both
of these can easily be suboptimal; see the full version for a concrete example [42].

This shows that CS is indeed an interesting theoretical problem. Furthermore,
from the practical side, CS has significantly less degree of freedom, so a heuristic
approach could aim to first find a good initial schedule, and then try to improve
this by fixing π and τ , and reducing communication cost separately.

For the simplest case of P= 2, a greedy approach already finds the optimal
solution (in any model of Table 3, since these are all equivalent for P=2).

Lemma 2. The CS problem can be solved in polynomial time for P=2.

Interestingly, for general P , the hardness of CS may depend on the communi-
cation model: we prove that CS is already NP-hard in the DB, FS or FB models,
but we leave it as an open question whether it is also NP-hard in DS.

Theorem 6. The CS problem is NP-hard in the DB, FS and FB models.

Proof sketch. The proof uses a reduction from 3D-matching: given sets X, Y ,
Z of size N , and M triplets from X×Y×Z, we need to select N triplets that
form a disjoint cover. We convert this into a CS problem where each triplet is
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represented by a value which needs to be sent from p0 to several other processors,
with the concrete deadlines depending on the given triplet. The construction
consists of two parts. The first part allows us to send exactly (M − N) values
from p0 to all other processors (the triplets that are not chosen) within the
allowed cost. The second part then allows us to send N further values from p0
to the other processors, but only if the corresponding triplets are disjoint.

We also note that if we consider a natural extension of the problem with
node weights (see the full version for details), then it becomes relatively simple
to reduce CS to standard packing problems, already for P=2 processors.

Lemma 3. With communication weights, CS is already NP-hard for P=2.

8 Formulation as an ILP Problem

Finally, we discuss a straightforward approach to formulate BSP scheduling as
an Integer Linear Programming (ILP) problem. Since today’s ILP solvers can
often solve even fairly large instances in reasonable time, this naive ILP formu-
lation may already be a viable approach in several applications, especially if the
computation is modelled as a DAG at relatively coarse granularity. A similar
approach with ILP solvers has already provided remarkable empirical results for
various combinatorial problems [22]. Our ILP formulation also generalizes very
naturally to several model extensions, e.g. with node weights.

Proposition 2. BSP scheduling can be formulated as an ILP on O(n · P · S)
variables in models DS, DB and FB, and on O(n ·P 2 ·S) variables in model FS.
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