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Abstract—Current state-of-the-art sparse tensor formats achieve
memory-efficient representations but often require extensive
indexing or precomputation, thus limiting their flexibility and
efficiency. We propose Bit-IF (Incremental Sparse Fibers with Bit
Encoding), a format that only records index increments encoded by
a compact bit array. This mode-independent approach allows for
an arbitrary index traversal during tensor-vector multiplications
(TVM), enabling the usage of space-filling curves. Bit-IF’s design
characteristics significantly reduce memory overhead, improve
data locality, and eliminate the need for multiple tensor copies
or mode-specific preprocessing before performing a TVM. Our
analysis and initial comparative studies show that Bit-IF reduces
memory consumption and TVM computation time compared to
COO-based approaches. The applicability of this method could be
extended to other tensor operations, such as tensor-matrix and
Khatri-Rao products.

Index Terms—Sparse tensor format; Incremental indexes;
Tensor algebra; High performance computing

I. INTRODUCTION

Dense tensor representations of high-dimensional datasets
significantly hinder computational analysis due to the expo-
nential growth of storage requirements, which scale as O(nD)
with respect to the dataset’s dimensionality D, and the resulting
computational complexities. Current state-of-the-art sparse
tensor formats, such as Coordinate (COO), Compressed Sparse
Fibers (CSF) [1] or Hierarchical Coordinate (HiCOO) [2],
reduce storage requirements and computational complexities,
but encounter limitations. For tensor operations like TVMs,
mode dependencies, complex indexing, and high conversion
complexities necessitate extensive precomputation and the
storage of duplicate tensors with different mode orderings,
thereby reducing efficiency and scalability.

This work presents Bit-IF (Incremental Sparse Fibers with
Bit Encoding), a novel storage scheme based on incremental
compression concepts previously explored for sparse matrices
and tensors. Although Bit-IF is constructed by compressing a
COO tensor, the approach significantly differs from the standard
COO format, which stores indices for each non-zero element.
Instead, Bit-IF only encodes index increments — changes in
index values between consecutive nonzero elements — and a

dedicated bit array. Each nonzero element is associated with a
bit sequence corresponding to the number of modes. Every bit
sequence signals which modes have changed, allowing us to
reconstruct complete indices incrementally without explicitly
storing them for each non-zero entry.
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Fig. 1: Conversion of a 3rd-order tensor from COO format to the proposed
Bit-IF encoding. ik signify mode-wise indices; ∆ik only record index changes.

II. BIT-IF FOR TVM
Bit-IF extends incremental compression techniques previ-

ously explored for sparse matrices and is built around three
central guidelines:

1) Minimal prior knowledge: No extensive preprocessing
or reordering of the input tensor indices should be needed
to perform TVM along arbitrary modes.

2) Mode independence: Bit-IF avoids dependence on a
specific mode ordering, allowing flexible access and
rearrangement of modes.

3) Arbitrary index traversal: Supports index access patterns
that improve data locality for specific tensor operations
beyond mode independence.

The key components of our approach are depicted in Fig. 1.
Tensor indices are stored via an incremental indexing strategy
along each mode ∆im, reducing storage overhead by capturing
only changes between consecutive indices. Then, a compact bit
vector b encodes the presence and direction of increments for
each non-zero entry, allowing efficient traversal and storage.

Definition 2.1 (kth-mode Tensor–Vector Multiplication):
Let A ∈ Rn0×n1×···×nd−1 ,v ∈ Rnk . Then, the k-mode

tensor–vector product

B = A ×k v ∈ Rn0×···×nk−1×1×nk+1×···×nd−1 (1)

is defined componentwise as

Bi0,...,ik−1, ik+1,...,id−1
=

nk−1∑
ik=0

Ai0,...,ik,...,id−1
vik . (2)

Spatial access patterns such as Z- or Hilbert curves, enable arbi-
trarily tensor traversal for TVM, bypassing the computationally
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(a) Nell-2 (nnz = 7.69 × 107)
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(c) Delicious-4d (nnz = 1.4 × 108)

Fig. 2: Time-to-solution for a TVM on three tensor datasets under different storage formats. Each bar includes the pre-computation overhead required by an
ad-hoc TVM. The extra cost of converting the baseline COO structure to the target format is shown separately. Labels marked base use our own COO-TVM
implementation, whereas pasta employs the TVMs from the PASTA library [3]. All measurements were taken single-threaded on a Intel Xeon Platinum 8360Y.

expensive reordering of tensor entries before computation. This
flexibility reduces preprocessing overhead, eliminates the need
for multiple instances of the same tensor, and ensures efficient
access patterns across different tensor modes. The adoption of
a blocking strategy allows the algorithm to be parallelized.

III. COMPARISON OF STORAGE REQUIREMENTS

We compare the storage requirements for a tensor with
nnzX nonzeros in d modes:

COO nnzX
(
wval + dwint

)
Bit-IF nnzX

(
wval + dwbit +

d−1∑
j=0

qj winc,s

)
HiCOO nnzX

(
wval + αb wlong + αb dwint + dwbyte

)
wx storage size of datatype x
qj ratio of index changes in mode j
αb number of blocks per non-zero in HiCOO

COO maintains integer indices for every mode and every non-
zero entry. HiCOO exploits the hierarchical structure of sparse
tensors by storing blocks of nonzero entries, thus enabling the
use of smaller data types for block relative coordinate indices.
HiCOO, derived from COO, may incur memory overhead for
tensors with predominantly single-mode index changes due
to limited compression for sparsely populated fibers. Bit-IF
reduces storage requirements by encoding index changes using
bits and increments, additionally allowing the use of smaller
data types for increments. For the tensor results illustrated
represented in Fig. 3, we reduce the required storage by an
average of 25% compared to the COO representation.

IV. PERFORMANCE RESULTS

In Fig. 2 we compare total time-to-solution of Bit-IF (blue)
and HiCOO (green) for TVM on synthetic and real-world
tensors [4], and report conversion time from an initial COO
representation. We also include PASTA-COO [3] (purple) and a
simple COO baseline (orange), to indicate Bit-IF’s current,
unblocked implementation state and the room for further
low-level optimizations. The synthetic tensor (Fig. 2b) —
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Fig. 3: Storage requirements of COO, HiCOO, and Bit-IF using 32-bit integers
for indices and increments. Benchmark tensor datasets are drawn from the
FROSTT collection [4]. Bit-IF reduces storage by an average of 25% compared
to COO and avoids multiple tensor instances for different traversal orders;
further gains over HiCOO are possible with smaller increment types.

a fourth-order tensor with identical dimensions and nnz-
rates — tests mode-dependent behavior. Across the repre-
sentative tensors, Bit-IF’s compute time is competitive or
faster than HiCOO in close to all cases, with some excep-
tions reported in Fig. 2c. Relative to HiCOO, we observe a
4.20× (Sgeom) / 4.65× (Sarithm) Speedup in the computation
phase and a 5.08× (Sgeom) / 5.15× (Sarithm) reduction in
the conversion time from COO.
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