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Abstract

Semi-automatic parallelization provides abstractions that

simplify the programming effort and allow the user to make

decisions that cannot be made by tools. However, abstrac-

tions for general-purpose systems usually do not carry suffi-

cient knowledge about the structure of the program, and thus

parallelization with them may lead to poor performance.

In this paper, we present a popular class of programs,

called linear pipelines, that cannot be easily and efficiently

parallelized with general-purpose abstractions. We discuss

the difficulties and inefficiencies of parallelizing linear pipe-

lines with general-purpose abstractions, and we explain how

pattern-specific abstractions overcome these problems. We

present the properties of linear pipelines that should be de-

scribed with pattern-specific abstractions and how these

properties are exploited by the state of the art. In addition, we

discuss the importance of exposing the performance param-

eters and how they are combined by pattern-specific knowl-

edge. We claim that designing pattern-specific abstractions

for general-purpose programming models is one way to sim-

plify parallel programming and improve performance with-

out sacrificing any expressive power. Consequently, we pro-

pose possible pattern-specific extensions to general-purpose

parallel programming models, e.g., OpenMP, to support easy

and efficient parallelization of linear pipelines.
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1 Introduction

Explicit parallel programming using threads [25, 48] has

proven to be a tedious task even for experts, and researchers

have focused on developing tools for automatic paralleliza-

tion [1, 6, 8, 14]. However, there exist twomain challenges on

automatic parallelization: data dependence analysis [38] and

runtime system configuration, which may either prohibit

parallel execution or may lead to poor performance.

Data dependence analysis [2, 41, 51] identifies opportu-

nities for parallel execution. Once this knowledge is avail-

able, a compiler can use it to automatically generate par-

allel code. Nevertheless, if automatic parallelization fails

to identify this knowledge, no runtime system can achieve

good performance. Moreover, runtime system configura-

tion [12, 13, 42, 43] determines proper values for all per-

formance parameters. For example, the number of allocated

threads, the granularity of tasks, and partitioning a program

into a number of tasks are common performance param-

eters for the execution of a parallel program. Thus, it is

necessary to ensure that the provided knowledge about data

dependences and runtime system configuration can lead to

good performance. Automatic discovery of this knowledge

remains one of the main challenges of parallel programming.

One way to overcome this limitation is by introducing an

intermediate layer of abstractions that decouples automatic

parallelization from the generation of parallel code, and it is

often necessary that the user provides all the knowledge for

efficient parallel execution. Therefore, we should follow a

different approach based on semi-automatic parallelization

as used by general-purpose systems such as OpenMP [39],

Cilk [7, 17], and Intel Threading Building Blocks (TBB) [22].

While all these systems provide parallelization abstractions,

there exist two main issues. First, in the absence of data

dependences, writing parallel programs that express both

data and task parallelism may be straightforward. However,

parallelizing programs with data dependences is non-trivial

https://doi.org/10.1145/3582514.3582522
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even for experts, as it is usually necessary to significantly

rewrite or at least annotate the code in various places. Second,

parallelization with general-purpose abstractions does not

usually lead to good performance due to the lack of sufficient

knowledge about the structure of the program.

In automatic parallelization, the knowledge collected from

program analysis can be used by the compiler to generate

optimized parallel code. However, this is not necessarily

the case when parallelization is done using abstractions as

they may fail to express the available knowledge. Thus, it

is important that parallelization abstractions can express all

the available knowledge about the structure of the program.

Linear pipelines [10, 26, 31, 44] are a large class of pro-

grams that cannot be easily and efficiently parallelized with

general-purpose abstractions. One reason for poor perfor-

mance may be the implementation of a general-purpose

system. We argue instead that the main reason, and the fo-

cus of this paper, is the lack of pattern-specific abstractions

in general-purpose systems. For example, if OpenMP is ex-

tended with pattern-specific directives for linear pipelines,

the compiler can decide whether it is necessary a) to generate

code that is usually generated based on general-purpose ab-

stractions, or b) to generate optimized code based on pattern-

specific abstractions. Thus, the main reason that general-

purpose systems perform poorly for some programs is due

to design decisions and not due to a poor implementation.

To simplify parallel programming and enable good per-

formance, we should design pattern-specific parallelization

abstractions based on the four following principles:

i. Pattern-specificity. The semantics is clear as the abstrac-

tions are intended to handle a specific class of programs.

This restriction allows the compiler to prevent the intro-

duction of both functional and performance bugs.

ii. Flexibility. Programs with the same structure have their

own performance parameters. Abstractions expose these

parameters and allow the user to make decisions, e.g.,

choosing the scheduling policy and the number of threads.

iii. Conciseness. The user inserts as few annotations as pos-

sible and does not rewrite the sequential code. Low-level

details of parallel programming, e.g., synchronization

algorithm, are hidden, since they are always handled in

the same way for a specific class of programs.

iv. PI − Annotations → SI. If we remove the annotations

from the Parallel Implementation (PI), the remaining

code is a Sequential Implementation (SI) with the same

semantics. This property makes it easier to reason about

the parallel code, since the parallel code looks sequential.

This paper presents the state-of-the-art techniques and

parallelization abstractions for linear pipelines. The discus-

sion leads to new insights by presenting the key ideas on the

design of existing pattern-specific abstractions. To summa-

rize, this paper makes the following contributions:

• it compares pattern-specific with general-purpose ab-

stractions for parallelization of linear pipelines;

• it explains why general-purpose abstractions are error-

prone and cannot enable good performance;

• it shows that pattern-specific abstractions do not auto-

matically lead to good performance even though the

necessary knowledge is available;

• it discusses how pattern-specific abstractions simplify

parallelization and express knowledge about the struc-

ture of linear pipelines;

• it proposes pattern-specific extensions for easy and effi-

cient execution of linear pipelines by general-purpose

parallel programming models; and

• it emphasizes on the importance of exposing the per-

formance parameters.

2 Motivation and problem statement

Linear pipelines [10, 24, 26, 31, 44] are a large class of loops

with cross-iteration dependences that benefit from pipeline

parallelism and are ubiquitous in streaming applications, e.g.,

compression algorithms. A linear pipeline is a loop that can

be partitioned into a sequence of stages such that stages

do not generate data for earlier stages. Statements of the

same loop iteration are executed sequentially due to data

dependences, and pipeline parallelism arises by overlapping

the execution of different loop iterations.

1 void ferret() {
2 int i = -1;
3 while (load(img[++i])) {
4 #pragma oss task in(img[i]) out(seg[i])
5 seg[i] = t_seg(img[i]);
6 #pragma oss task in(seg[i]) out(extr[i])
7 extr[i] = t_extr(seg[i]);
8 #pragma oss task in(extr[i]) out(vec[i])
9 vec[i] = t_vec(extr[i]);
10 #pragma oss task in(vec[i]) out(rank[i])
11 rank[i] = t_rank(vec[i]);
12 #pragma oss task in(rank[i]) out(outstr)
13 t_out(rank[i], outstr);
14 }
15 #pragma oss taskwait
16 }

Figure 1. Parallel OmpSs implementation for the ferret

benchmark distributed with PARSEC [3, 4]. The implemen-

tation is based on that presented by Chasapis et al. [11].

Figure 1 shows a parallel implementation for the linear

pipeline of ferret [3, 4]. All variables are global, unless they

are declared within the ferret function. In line 13, the

function t_out writes to the shared variable outstr. Par-
allelization of a linear pipeline with OpenMP [39], Open-

Stream [40], and OmpSs [16] is similar, since all these models

rely on similar compiler directives. We discuss parallelization

of ferret using OmpSs as an example.
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Parallelization with the OmpSs general-purpose directives

demands creation of tasks that are synchronized according to

data-flow relationships. The user annotates every stage with

a directive for the creation of tasks and describes how the

data flow from one task to the other. Tasks are created while

iterations are executed sequentially, and once the execu-

tion is completed, explicit synchronization is enforced with

taskwait in line 15. However, there exist two main issues

with such a parallel implementation for linear pipelines.

First, the user describes data-flow relationships between

the stages of a linear pipeline. This step requires understand-

ing how the data flow from one stage to the other. However,

statements of the same loop iteration are executed sequen-

tially for linear pipelines, and thus, ideally, data-flow relation-

ships within the same loop iteration should not be described.

Moreover, none of OmpSs, OpenMP and OpenStream pro-

vides abstractions for parallelization of while loops. Paral-

lelization is performed by following a task-based approach

that requires combination of various directives and explicit

synchronization. Second, the performance may be poor for

fine-grained tasks as the runtime system does not exploit

any knowledge about linear pipelines. In particular:

• The runtime system is not aware of the loop structure

nor of the user’s intention to execute a linear pipeline.

Multiple tasks are scheduled for the different stages of

an iteration, but the runtime system does not know a

priori that these tasks cannot be executed in parallel.

• The sequential execution of tasks is ensured with data-

flow relationships. Monitoring data dependences leads

to additional overhead.

• By spawning tasks for each stage, it is necessary to

move data between the different tasks of a loop itera-

tion. Instead, multiple stages should be handled as a

single task that represents a whole loop iteration.

• There is no distinction between stages with and with-

out cross-iteration dependences, thus making it im-

possible to select an optimized schedule based on the

structure of data dependences in linear pipelines.

3 Pattern-specific parallelization

abstractions for linear pipelines

Various pipelining techniques [10, 24, 26, 31, 44] have been

proposed and evaluated using more than 20 programs col-

lected from different popular benchmark suites [24, 32, 34,

44, 47]. Hence, earlier work shows that linear pipelines are

sufficiently important to have their own pattern-specific ab-

stractions. Existing general-purpose programming models,

e.g., OpenMP, can be extended by adopting pattern-specific

abstractions for parallelization of linear pipelines.

3.1 Structure of linear pipelines

All stages of a loop iteration are executed sequentially due

to data dependences, and overlapped execution of different

iterations results in pipeline parallelism. In the absence of

data dependences, it is possible to execute a stage for different

iterations in parallel. However, cross-iteration dependences

exist between every pair of successive loop iterations.

Every data dependence of a stage implies a scheduling

constraint, since the scheduling algorithm must ensure that

all required data are available before the execution of it.

Thus, the performance depends on the number of data de-

pendences. Reducing the number of data dependences is

impossible, unless we rewrite the program. The key idea

is to improve the performance of the parallel execution by

reducing the number of scheduling constraints.

Linear pipelines are modeled as loops with cross-iteration

dependences that fulfill two conditions:

• statements are executed sequentially within an itera-

tion due to data dependences, and

• data dependences exist between successive iterations.

Most of the state-of-the-art techniques [10, 24, 26, 31, 44]

are optimized for overlapped execution of loop iterations

that fulfill these two conditions. This is a rational design deci-

sion as most pipelined programs lead to a linear sequence of

stages. For example, linear pipelines are common in stream-

ing applications, where every iteration reads data from an in-

put stream, processes the data, and then writes the processed

data to an output stream. Raman et al. [44] present PS-DSWP

that allows the execution of statements of the same loop itera-

tion to overlap in time, but such a non-linear communication

scheme may degrade the overall performance [45].

3.2 Scheduling constraints

Provided that the two above conditions are fulfilled, data de-

pendences become unimportant. Although data dependences

imply scheduling constraints, some of them can be lifted as

they are satisfied by other scheduling constraints. In contrast

to general-purpose abstractions of programming models that

express data-flow relationships, pattern-specific abstractions

for linear pipelines express scheduling constraints. This sit-

uation simplifies the programming effort and improves the

performance as the important knowledge is passed directly

to the runtime system. The performance does not depend on

whether the compiler can automatically discover the min-

imum number of scheduling constraints or not. The user

describes all the required knowledge, and the compiler sim-

ply generates efficient parallel code.

The execution of every stage is determined by either one

or two scheduling constraints. One constraint always en-

forces the sequential execution of all stages within a loop

iteration, and the other constraint determines whether a

stage can be executed in parallel with the same stage of the

previous loop iteration or not. Figure 2 shows a Directed

Acyclic Graph (DAG) representation of a linear pipeline that

is partitioned into three stages. The arrows indicate schedul-

ing constraints introduced by data dependences. We notice
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Figure 2. DAG representation for a linear pipeline of three

stages. The figure is based on a figure presented in [27].

that stages with different colors are executed sequentially

within a loop iteration, but the execution of stages with dif-

ferent colors may overlap in time for different loop iterations.

Parallel execution of stages with gray color is possible, but

parallel execution of stages with green and blue color is not

possible due to scheduling constraints. Therefore, an opti-

mized scheduling algorithm ignores the data dependences

and makes decisions based on scheduling constraints.

Figure 3 presents three possible scenarios to show that the

number of scheduling constraints cannot be more than two

for the execution of each stage. Figure 3a shows that a data de-

pendence from the green to the blue stage does not introduce

any scheduling constraint, since the two constraints shown

with magenta ellipses already satisfy the scheduling con-

straint of this additional data dependence. Figure 3b presents

a cross-iteration dependence between the green stages of

non-successive iterations, and this data dependence does not

imply any additional constraint either. Figure 3c shows that

a cross-iteration dependence between the green and the gray

stage does not introduce any scheduling constraint, since

the constraint implied by this data dependence is already

satisfied as shown with the magenta ellipses.

This simple model bounds the number of scheduling con-

straints, but it does not enable all possible parallelization

opportunities that may be found in loops with cross-iteration

dependences. For example, if a loop does not include data

dependences between all successive iterations or includes

statements of the same iteration that can be executed in par-

allel, the loop can be handled as a linear pipeline but perhaps

not as efficiently as possible. The simplicity of the model does

not reduce applicability; it may degrade the performance.

Although there exist loops with data dependences that

cannot be captured precisely by the simple model for linear

pipelines, it is unclear whether a more complex and precise

model would lead to better performance. The overhead for

expression of additional parallelization opportunities may

negate any benefit from parallel execution. For example,

statements of a loop iteration are always executed sequen-

tially for linear pipelines, and the parallel execution of these

statements would not necessarily lead to better performance,

e.g., as shown in [45]. Therefore, a simple model that is de-

signed for efficient execution of linear pipelines may lead to

good performance even for different classes of loops.

3.3 Parallelization with Cilk

Lee et al. [26] propose an innovative pattern-specific struc-

ture to simplify parallelization of linear pipelines with Cilk.

Figure 4 shows how to use the pipe_while structure,

which allows overlapped execution of different loop iter-

ations for the parallelization of ferret. Data flow within a

loop iteration is not described since all statements are exe-

cuted sequentially. Data flow across different iterations is not

described either, since Cilk expresses scheduling constraints

instead of data-flow relationships expressed by task-based

systems. In line 10, pipe_stage_wait indicates the be-

ginning of a stage with a scheduling constraint, i.e., this

stage is executed after the completion of the same stage for

the previous iteration. In line 5, pipe_stage indicates the

beginning of a stage without a scheduling constraint.

Although the pattern-specific annotations of Cilk carry

knowledge that enables the design of an optimized runtime

system, this knowledge is not fully exploited by the run-

time system. In particular, Mastoras and Gross [34] show

that the work-stealing scheduling algorithm is not suitable

for the execution of linear pipelines, since it does not ex-

ploit the structure of data dependences in linear pipelines,

and the pattern-specific pipe_while structure achieves

poor performance for fine-grained linear pipelines. This sit-

uation confirms that the design of suitable parallelization

abstractions does not necessarily imply efficient execution;

an efficient scheduling algorithm is necessary to exploit the

pattern-specific knowledge described in the abstractions.

3.4 Parallelization with Proteas

Proteas [27, 31] aims at simplifying parallelization of lin-

ear pipelines by providing pattern-specific compiler direc-

tives. The syntax of the directives is similar to that of the

OpenMP [39] directives as shown in Figure 5.

Proteas directives are designed to simplify paralleliza-

tion and avoid some common functional bugs by performing

static analysis, but it is still the user’s responsibility to anno-

tate the code with suitable directives. Proteas directives are

similar to the annotations proposed by Lee et al. [26], since

both abstractions are pattern-specific and express schedul-

ing constraints. Proteas is designed to avoid rewriting code,

protect the user from functional and performance bugs, and

provide additional flexibility [31], as follows.

Figure 5 presents the linear pipeline of ferret annotated

with directives. Proteas supports six transformations for

parallelization of linear pipelines according to different pipe-

lining techniques. The selected technique is a parameter

indicated by transf-name, and the existence of sched-

uling constraints is determined by stage-type. Figure 5
shows that the user has the flexibility to select proper values
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Stages

Loop iterations

(a) First scenario. (b) Second scenario. (c) Third scenario.

Figure 3. Possible scenarios of data dependences for linear pipelines that do not imply additional scheduling constraints.

1 void ferret() {
2 int ii = -1;
3 pipe_while (load(img[++ii])) {
4 int i = ii;
5 pipe_stage;
6 seg[i] = t_seg(img[i]);
7 extr[i] = t_extr(seg[i]);
8 vec[i] = t_vec(extr[i]);
9 rank[i] = t_rank(vec[i]);
10 pipe_stage_wait;
11 t_out(rank[i], outstr);
12 }
13 }

Figure 4. Parallel Cilk implementation for the ferret bench-

mark distributed with PARSEC [3, 4].

1 void ferret() {
2 #pragma proteas transf-name [perf-param-list] \
3 shared(outstr) private(img, seg, extr, vec, rank)
4 while (load(img)) {
5 // no scheduling constraint
6 #pragma proteas transf-name stage-type
7 seg = t_seg(img);
8 extr = t_extr(seg);
9 vec = t_vec(extr);
10 rank = t_rank(vec);
11 // scheduling constraint
12 #pragma proteas transf-name stage-type
13 t_out(rank, outstr);
14 }
15 }

Figure 5. Parallel Proteas implementation for the ferret

benchmark distributed with PARSEC [3, 4].

for all performance parameters, e.g., number of threads and

chunk size, with the optional perf-param-list. Thus,
the design of Proteas shows that it is possible to provide

directives that are the same for different pipelining tech-

niques [27, 30, 32–35], since all low-level details, such as

discussed around Figure 1, are hidden from the user.

Table 1 reports the transformations of Proteas: psdswp,
urts, lbpp, pipelight, static, and pipelite. The
first four transformations handle static linear pipelines, and

the type of stages is either parallel or sequential, depending

on whether it can be executed in parallel or not for differ-

ent loop iterations. For dynamic linear pipelines, stages and

their scheduling constraints are determined at run-time. The

type independent implies no scheduling constraint, and de-

pendent is used when execution is possible only after the

completion of the same stage for the previous iteration. The

types sequential/parallel determine the type of a stage for all

iterations at compile-time, and dependent/independent de-

termine the type of a stage for a single iteration at run-time.

The types dependent/independent may have an argument

that defines an identifier for the created stage and enables dy-

namic linear pipelines that allow synchronization of stages

that are seemingly different [34].

All transformations are accompanied by performance pa-

rameters. The first parameter determines the number of

threads used for parallel execution of a linear pipeline, but

the semantics of it may differ for different transformations

as the total number of created threads depends on the way of

mapping stages onto threads. The chunk size has the same

semantics for all transformations and determines the number

of successive loop iterations that are grouped together into

a single task to increase the granularity and reduce the over-

head. The third parameter bounds memory usage by limiting

the maximum number of active tasks. Its semantics may dif-

fer for different transformations, since the queue size for the

psdswp transformation refers to local data structures per

thread, whereas both the buffer size and the throttling limit

refer to the size of a shared data structure. A detailed de-

scription of these performance parameters and their default

values can be found in [31–35].

4 Exploitation of pattern-specific

knowledge for linear pipelines

Pipelining techniques differ in the way stages are mapped

onto threads. The two main mapping schemes [5] are the

fixed data mapping that assigns a generic role to threads

and the fixed code mapping that assigns a specific role to

threads. A combination of these two schemes is the hybrid
mapping [30]. The way stages are mapped onto threads is

often determined at compile-time, and there exist systems
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Transformation Supported types of stages Threads Chunk size Active tasks

psdswp sequential / parallel num_threads(T) chunk_size(C) queue_size(Q)
urts sequential / parallel num_threads(T) chunk_size(C) buffer_size(K)
lbpp sequential / parallel num_threads(T) chunk_size(C) n/a

pipelight sequential / parallel num_threads(T) chunk_size(C) n/a

static dependent[(s)] / independent[(s)] num_threads(T) chunk_size(C) n/a

pipelite dependent[(s)] / independent[(s)] num_threads(T) chunk_size(C) throttling(K)

Table 1. Pattern-specific compiler directives for the six transformations of Proteas and their performance parameters.

that perform dynamic mapping. Most pipelining techniques

handle a static pipeline structure, i.e., stages are known at

compile-time, and there exist systems that handle linear

pipelines with a dynamic structure.

Technique Mapping Structure Scheduling policy

LBPP [24] fixed data static round robin

HELIX [10] fixed data static round robin

Static [33] fixed data dynamic round robin

PS-DSWP [44] fixed code static round robin

URTS [32] fixed code static dynamic

Pipelight [35] hybrid static dynamic

Piper [26] dynamic dynamic work stealing

Pipelite [33, 34] dynamic dynamic dynamic

Table 2. Pipelining technique specifications.

Table 2 presents an overview of the state of the art on

linear pipelining. Figure 6 illustrates the sequential execution

of a linear pipeline partitioned into four stages and its parallel

execution according to the different mapping schemes. The

arrows between stages indicate scheduling constraints, i.e.,

the source stage is executed before the target stage.

Proteas [27, 31] provides directive-based transformations

for parallelization according to the state of the art shown

in Table 2, except for HELIX [10] and Piper [26]. In the rest,

we discuss the design of these techniques and explain how

their design decisions exploit the pattern-specific knowl-

edge of the Proteas directives. We provide new insights

that are the key ideas on the design of both pattern-specific

parallelization abstractions and efficient runtime systems.

LBPP [24] automatically parallelizes linear pipelines and

exploits the knowledge about scheduling constraints be-

tween all stages of a loop iteration by assigning their execu-

tion to the same thread as shownwith the fixed data mapping

in Figure 6. Data of iterations are stored locally, and inter-

thread communication of shared data is achieved via shared

memory. Since scheduling constraints are expressed between

successive iterations, earlier iterations are executed first, by

scheduling iterations in round robin order. Synchronization

for the sequential execution of a stage with scheduling con-

straints is achieved with a token, which is passed from one

thread directly to the thread that executes the next iteration.

PS-DSWP [44] automatically parallelizes linear pipelines

and assigns a specific role to threads according to the fixed

code mapping shown in Figure 6. Threads execute only a

Time

Thread

Sequential execution

TA

Threads

Fixed dataTA

TB

Threads

Fixed codeTA

TB

TC

TD

TE

Threads

HybridTA

TB

TC

Figure 6. Sequential and parallel execution of the first two

iterations for a four-stage linear pipeline using different map-

ping schemes. The third stage does not imply any scheduling

constraint. The figure is based on a figure presented in [27].

single stage but for all iterations. Communication and syn-

chronization between threads that execute different stages is

achieved via queues. Stages with scheduling constraints are

executed by a single thread, and stages without a scheduling

constraint may be executed by multiple threads. To avoid

contention on shared queues, PS-DSWP maintains a private

input/output queue for each thread. All queues have a single

enqueuer and a single dequeuer, which enables the design of

an efficient wait-free queue. Earlier iterations are executed

first, and the data of iterations are enqueued to the input

queues of multiple threads in round robin order.
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URTS [32] is an extension of PS-DSWP that combines the

fixed code mapping with a suitable concurrent data struc-

ture to enable efficient dynamic scheduling. URTS avoids any

synchronization overhead for the execution of stages with

a scheduling constraint, since all iterations are executed by

the same thread. A single bounded data structure is shared

by all threads and consists of memory slots that store data

required for the execution of an iteration. Threads have read

and write access to these slots, and communication is im-

plicitly achieved through shared memory; data do not move

between different slots. Access to the data structure is given

based on tickets issued when a new iteration is scheduled.

Thus, contention on the shared data structure is avoided

since different threads have access to different memory slots.

Dynamic scheduling is performed based on the tickets, which

determine the order in which iterations are executed, such

that earlier iterations are executed first. Synchronization

between threads that execute different stages of the same

iteration is achieved with a token passed from one thread

directly to the thread that executes the next stage.

Pipelight [35] relies on the hybrid mapping, which decou-

ples a stage without a scheduling constraint from a stage

with a scheduling constraint as shown in Figure 6. These

two stages are executed by different threads to enable effi-

cient dynamic scheduling. Most stages of an iteration are

executed by the same thread, and most of the time communi-

cation is achieved via shared memory. Dynamic scheduling

is performed by issuing tickets that determine the execution

order of iterations. For stages with a scheduling constraint,

ticket locks ensure synchronization of iterations executed

by different threads. Communication and synchronization

between decoupled stages is achieved with a data structure

that exists only between successive stages, since stages of a

loop iteration are always executed sequentially.

Pipelite threads execute loop iterations either to comple-

tion or until they encounter a stage with a scheduling con-

straint that is not satisfied. Thus, Pipelite avoids any commu-

nication overhead from transferring data between different

threads. There exist two types of scheduled tasks. These are

new tasks that represent loop iterations that have not been

scheduled before and ready tasks for previously suspended

iterations that are now ready for execution. Communication

is achieved with a data structure that is shared by all threads

and stores data required for the execution of each task, i.e.,

a group of successive loop iterations. Threads have read and

write access to the data of each task, and if a task is executed

by a single thread, then the data of the task are exclusively

accessed by this thread. Moreover, synchronization occurs

only between pairs of tasks for successive loop iterations, and

each task maintains a single variable that shows its progress.

For the execution of each stage, there may exist only one

scheduling constraint introduced by the previous loop iter-

ation. The design of Pipelite exploits this knowledge about
the structure of data dependences, and each thread ensures

that the scheduling constraint is satisfied by checking the

progress of a specific task. The first stage of a linear pipeline

is always executed sequentially for all loop iterations due

to data dependences in the loop condition. A ticket counter

dynamically issues tickets that determine the order in which

tasks are executed, and earlier iterations are scheduled first

to avoid suspension of later iterations. The scheduler main-

tains a ready queue that stores ready tasks and always tries

to schedule a task from the ready queue before it schedules

a new task using the ticket counter. In this way, Pipelite
exploits the pattern-specific knowledge about data depen-

dences in linear pipelines and always tries to execute earlier

loop iterations to satisfy the scheduling constraints.

The completion of a stage may enable the execution of

another task that is currently suspended. Threads check

whether they enable the execution of another task, and if

this is the case, they enqueue this task in the ready queue. The

design of Pipelite exploits the knowledge about scheduling
constraints that are expressed only between successive loop

iterations, and thus threads check only if they enable the

task for the next loop iteration.

Suspension of a task requires storing the data and the

suspension point such that the execution can be continued

later from the same point. A trivial solution to suspend and

continue tasks is by using setjmp and longjmp buffers [46].

However, Pipelite introduces the local suspension mecha-

nism that exploits knowledge about the structure of linear

pipelines to perform efficient suspension and continuation

of tasks. Data of all active tasks are always stored in a shared

data structure, and thus threads do not need to store and

load data to suspend and continue a task, respectively. Fur-

thermore, the suspension point of a task is not any arbitrary

point; suspension may occur only before the execution of

a stage with a scheduling constraint, and the beginning of

such a stage is indicated with the directives of Proteas. Con-

sequently, each task maintains a scalar variable that shows

the suspension point and is updated before a thread checks

whether a scheduling constraint is satisfied or not.

5 Related work

HELIX [10] automatically parallelizes linear pipelines and

assigns whole loop iterations to threads in round robin. Se-

quential execution of a stage is achieved with signal-based

synchronization, where a thread receives signals from the

thread that executes the previous iteration. Each thread has

read access to its own memory buffer and write access to the

buffer of the thread that executes the next iteration. HELIX

reduces the overhead by removing redundant signals and

introduces helper threads to prefetch signals.

Intel Threading Building Blocks (TBB) [22] supports par-

allelization of linear pipelines with the pipeline class, and
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Vandierendonck et al. [50] present a parallelization abstrac-

tion of queues, called hyperqueues, that allows the expres-

sion of deterministic and scale-free pipeline parallelism. How-

ever, both Intel TBB and hyperqueues demand significant

rewriting of the code to express a linear pipeline.

Griebler et al. [19] study the expressiveness and perfor-

mance of parallelization abstractions for stream processing,

by using programs that can be expressed as linear pipelines,

e.g., ferret from the PARSEC [3, 4] benchmark suite. However,

abstractions for stream processing express data-flow relation-

ships as discussed in Section 2, and thus they do not benefit

from pattern-specific knowledge for linear pipelines. Hoff-

mann et al. [20] use SPar [18], a domain-specific language for

stream processing, to automatically generate parallel code

for OpenMP [39] by using a source-to-source compiler. In

this way, the parallelization process is simplified, but any

pattern-specific knowledge about linear pipelines that is not

expressed by the OpenMP directives remains unexploited.

Huda et al. [21] present a template matching technique

that identifies pipeline parallelism, and Astorga et al. [15]

present a tool that performs static analysis to automatically

identify parallel patterns, e.g., pipeline parallelism. Tang and

Gedik [49] propose a technique that automatically identi-

fies pipeline parallelism in streaming applications. DPM [37]

and FDP [47] aim at improving the pipeline performance at

run-time by allocating a number of threads that improves

the performance. DoPE [42] and Parcae [43] perform config-

uration of the runtime system for various techniques. Thus,

earlier work may be used to automatically identify pipeline

parallelism and perform runtime system configuration, and

then to generate the directives required by Proteas.

6 Evaluation

The focus of this paper is the design of parallelization abstrac-

tions for linear pipelines. The evaluation provides a qualita-

tive comparison of the design decisions for pattern-specific

and general-purpose abstractions. Moreover, it provides an

overview for the performance of the considered pipelining

techniques according to the evaluation of earlier work.

6.1 Abstractions

Proteas directives are in line with the four principles pre-

sented in Section 1. They are pattern-specific as they can

be used only for linear pipelines. They offer flexibility since

the same directives can be used for one of the six techniques

presented in Table 1, and they expose the performance pa-

rameters. Proteas directives are concise as the pipelining

technique is a parameter, and all the low-level details of the

selected pipelining technique, e.g., communication, synchro-

nization, and scheduling algorithm, are hidden. Proteas

makes the parallel code look sequential and makes it easier

for the user to reason about the correctness of the paral-

lel code. The parallel implementation shown in Figure 5 is

essentially the sequential code annotated with directives.

Comparing Figure 1 and Figure 5, the Proteas implemen-

tation is much simpler than that of OmpSs, which requires

expression of data-flow relationships and explicit synchro-

nization. The OmpSs implementation demands code rewrites,

by introducing an array for all private data. Comparing with

the Cilk implementation in Figure 4, Cilk does not require an

array of private data as they can be declared locally within

the loop body. However, in this case, private data cannot be

used in the loop condition, i.e., the invocation of the function

load has to move from the condition to the loop body.

Pattern-specific abstractions can improve performance as

they enable the design of an efficient runtime system and

provide flexibility by exposing the performance parameters.

Although performance parameters may be considered as

low-level details, we claim that exposing the performance

parameters is better than hiding them, making performance

tuning possible without significant code rewrites.

To illustrate, we consider chunking, a mechanism that

groups together successive iterations of a loop into the same

task to increase the granularity and reduce the overhead. The

for directive of OpenMP [39] and the cilk_for structure

of Intel Cilk Plus [23] allow the user to select a proper chunk

size, i.e., the number of loop iterations that are grouped

together. Nevertheless, choosing the chunk size for a linear

pipeline is impossible when parallelization is performed with

task-based systems, e.g., OpenMP, OpenStream, and OmpSs.

None of these systems are aware of the loop; to implement

chunking, the code has to be rewritten by the user. Cilk

provides the pipe_while structure for parallelization of

linear pipelines based on Piper [26], but Cilk does not allow

the user to select the chunk size. Although the design of a

chunking algorithm for static linear pipelines is trivial, Piper

supports dynamic linear pipelines, for which stages and their

scheduling constraints are determined at run-time. The lack

of an explicit performance parameter that determines the

chunk size is not just an implementation issue; it is a design

limitation of Piper. Proteas [31] supports Pipelite and Static
that handle dynamic linear pipelines and performs chunking

based on a novel algorithm [33], thus exposing the chunk

size parameter for both static and dynamic linear pipelines.

6.2 Performance

The state of the art includes techniques that explore the de-

sign space, by relying on different mapping schemes, data

structures, mechanisms, and algorithms, and they support

linear pipelines with static and dynamic structure. The de-

sign decisions are very different, and different techniques

perform well for different situations. Exhaustive evaluation

of Proteas and Piper is presented in [26, 27, 31–35], and it

shows that the performance depends mainly on the schedul-

ing policy and the way stages are mapped onto threads.
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The round-robin scheduler of LBPP, PS-DSWP, and Static
implies low overhead and performs well for fine-grained

linear pipelines. However, it does not achieve load balancing

for load-imbalanced linear pipelines, i.e., when iterations

differ substantially in execution time. The work-stealing

scheduler of Piper implies higher overhead than the dynamic

schedulers of Proteas, and Piper performsworse thanURTS,

Pipelight, and Pipelite for fine-grained linear pipelines.

Pipelining techniques that rely on the fixed data mapping,

e.g., LBPP, simplify partitioning and inherently achieve load

balancing for load-balanced linear pipelines, since all threads

execute the same code. However, LBPP does not achieve load

balancing for load-imbalanced linear pipelines. Threads that

cannot execute a stage due to a scheduling constraint have

to wait until the constraint is satisfied. Thus, the number

of active iterations cannot exceed the number of threads.

PS-DSWP and URTS rely on the fixed code mapping that

decouples stages, and threads buffer data of suspended iter-

ations into a data structure. The performance depends on

the size of the data structure that determines the maximum

number of active iterations. The drawback of the fixed code

mapping is that load balancing is not inherently achieved

as threads have a specific role and execute different stages.

The performance is limited by the most time-consuming

stage, and thus partitioning should lead to load-balanced

stages. The hybrid mapping aims at simplifying partitioning

and load balancing by decoupling only those stages that are

necessary to perform dynamic scheduling.

Finally, the evaluation of earlier work [27, 31, 32, 34]

shows that Piper [26], which is designed especially for lin-

ear pipelines, does not lead to good performance for fine-

grained linear pipelines, since Piper does not exploit as much

knowledge as the runtime system of Proteas. Thus, it is ex-

pected that a more general-purpose runtime system, e.g.,

OpenMP [39] implies even higher overhead than Piper.

7 Conclusion

Linear pipelines are an important class of programs that

cannot be easily and efficiently parallelized with general-

purpose abstractions. This is certainly not the only one; recur-

sive functions are another class of programs that benefit from

pattern-specific abstractions [36]. We should identify more

classes of programs, design pattern-specific abstractions, and

integrate them with general-purpose programming models.

A comparison of OpenMP directives with those of Proteas

shows that Proteas simplifies programming and improves

performance, without sacrificing the expressive power of

OpenMP. That is, it is possible to adopt pattern-specific di-

rectives within general-purpose programming models, thus

benefiting of both specificity as well as genericity.

This paper focuses on the design of suitable pattern-specific

abstractions that are sufficiently expressive to enable good

performance. The design of suitable abstractions can be seen

as the first step towards automatic parallelization, as abstrac-

tions define an interface between the user and the runtime

system. Future work may design algorithms for more pre-

cise data dependence analysis, and then some or all of the

necessary knowledge required in the directives can automat-

ically be provided by tools. Moreover, robust tools for proper

runtime system configuration may be developed by building

cost models that estimate the performance of the program.

For example, automatic selection for the number of threads

and the chunk size for nonblocking execution [28, 29] in

GraphBLAS [9, 52] leads to good performance that is very

close to that achieved by the best manual configuration.
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