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Abstract
We present HiCR, a model to represent the semantics of dis-
tributed heterogeneous applications and runtime systems.
The model describes a minimal set of abstract operations
to enable hardware topology discovery, kernel execution,
memory management, communication, and instance man-
agement, without prescribing any implementation decisions.
The goal of the model is to enable execution in current and
future systems without the need for significant refactor-
ing, while also being able to serve any governing parallel
programming paradigm. In terms of software abstraction,
HiCR is naturally located between distributed heterogeneous
systems and runtime systems. We coin the phrase Runtime
Support Layer for this level of abstraction. We explain how
the model’s components and operations are realized by a
plugin-based approach that takes care of device-specific im-
plementation details, and present examples of HiCR-based
applications that operate equally on a diversity of platforms.

1 Introduction
Recent advancements in artificial intelligencemodels present
substantial demands to modern computing systems, as they
require computational power beyond that of traditional CPUs.
In some instances, their memory and compute requirements
go beyond what a single device or node can offer. This trend
has driven the rise of distributed heterogeneous systems as a
leading approach for executing AI pipelines. These systems
are characterized by, first, the use of accelerators such as
Graphics and Neural Processing Units (GPUs and NPUs) for
higher-dimensional tensor operations, and; second, the use
of distributed computing to scale out computational perfor-
mance and memory capacity.

Distributed heterogeneous systems induce significant com-
plexities to software development, especially in applications
that strive to maximize performance and fully exploit the
hardware and interconnect capabilities. On one hand, the use
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of accelerators often requires the use of vendor-specific in-
terfaces, resulting in tightly coupled implementations. On the
other hand, distributed applicationsmust deal with deployment-
specific requirements, such as those for cloud platforms or
data centers.
The complexity of handling devices and interconnect-

specific technologies undermines the application’s portabil-
ity, as changes to the underlying hardware often necessitate
extensive refactoring, even when semantics remain the same.
These challenges highlight the need for flexible systems ca-
pable of hiding platform-specific implementation details and
seamlessly adapt to new hardware and technologies.

We present HiCR (pronounced as ‘hiker’), a model to repre-
sent the semantics of distributed heterogeneous applications
and runtime systems. The model exposes a minimal set of
operations to enable hardware topology discovery, kernel
execution, memory management, communication, and in-
stance management. These operations are not tied to any
given technology. Instead, they describe an application in
terms of abstract operations that do not prescribe implemen-
tation details. As a result, any HiCR-based code will reach
its intended result regardless of the system it executes on.
The HiCR model employs a plugin-based approach, dele-

gating to third-party developers the responsibility of trans-
lating its semantics into implementation-specific directives.
The benefits of this design are twofold. First, code written
using HiCR need only be written once to seamlessly execute
across a wide range of technologies and platforms. Second,
any newly developed plugin automatically becomes avail-
able to all HiCR-based code, allowing them to benefit from
the added functionality without further modifications.

The contributions of this paper are: (a) the introduction of
a Runtime Support Library as an intermediate layer between
an application and its programming framework or runtime
system, and its underlying technologies; (b) the proposal of
HiCR, as an abstract model for the operations that this layer
should offer; (c) an open-source implementation of themodel,
and; (d) its functional verification through experiments.
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The rest of the paper is as follows: in §2, we discuss related
work and highlight the differences with ours; in §3 we intro-
duce the HiCR model; in §4, we describe its implementation
and highlight the key components that enables application
portability; in §5, we show empirical results that demonstrate
how HiCR-based codes obtain equal results with different
technologies without the need of refactoring, and; in §6 we
provide final thoughts and discuss future work.

2 Related Work
This Section discusses similarities and differences of HiCR
with, in turn: runtime systems based on metaprogramming
(e.g., pragmas), tasking runtime systems, skeleton and auto-
matic programming frameworks, as well as (cloud) workflow
middleware.

Metaprogramming frameworks expose annotations in the
application code to automatically apply transformations dur-
ing compilation time for the use of specific technologies.
OpenACC [46], OpenArc [35] and HMPP [21] detect the func-
tions with annotations and make them available to run on
accelerator devices while others, such as OpenMP [44, 48,
61], XcalableMP [63, 64], and OmpSs-2 [2, 7, 24, 45] have
been extended to support heterogeneous, and in some cases,
distributed-memory parallel computing. These programming
frameworks provide an advantage when adapting existing
code to parallel execution, whereas using HiCR for this pur-
pose may require significant refactoring. However, metapro-
gramming also introduce complexities in maintaining and
extending compiler support for the underlying technolo-
gies. Moreover, platform vendors usually provide their own
specialized, often closed-source, compiler implementations,
thus hindering the extension of these annotations to new
system technologies. With HiCR, all operations are explicit
and directly handled by the supporting backends, hence pre-
serving compiler compatibility even when extended to new
technologies. It also allows for proprietary backends without
sacrificing portability.

Task-based programming frameworks organize programs
as a collection of tasks and rely on a runtime system to
make scheduling and resource allocation decisions. They
seamlessly support task execution on heterogeneous devices
and across distributed systems by adding specific APIs for
such operations. For example, the StarPU [6] runtime system
interfaces directly with MPI and OpenCL or CUDA [41] for
distributed communication andGPU operations, respectively.
For each technology, it adopts corresponding API extensions
(starpu_mpi, starpu_cuda, and starpu_opencl) [5]. The
drawback is that either their implementation or API remain
fixed to the underlying technologies and are not transferable
to any other current or future system. Instead, the HiCR
model ensures that applications can seamlessly adapt to
future technologies by developing corresponding backends.

Efforts from academia and industry have sought auto-
matic frameworks for distributed and heterogeneous com-
puting that allow expressing portable high-level code. One
approach revolves around skeletons, mini-programs with
prescribed input and output structures that can automat-
ically parallelize and dispatch to accelerators and whose
composition describes higher-order functionalities. These
include SkePU [25], Kokkos [22], RAJA [8], AllScale [32],
SYCL [58], and Data Parallel C++ [17]. In contrast to these
approaches, HiCR requires no language extensions nor does
it prescribe specific skeletons. PGAS [1] inspired another set
of approaches, leading to frameworks such as Chapel [13],
X10 [15], and UPC [23] – while a final class of frameworks
center around BSP and its automatic PRAM simulation [62]
which led to frameworks such asMapReduce [18], Pregel [37],
and Spark [67]. Applying these approaches to heterogeneous
systems is not straightforward; for example, Chapel provides
abstractions to define kernels that dispatch to accelerators
via ad-hoc extensions such as kernel-launch, and similar
for other automatic frameworks [65]. In contrast, HiCR pro-
vides direct control over system resources and application
scheduling decisions without the need for such extensions.
Distributed memory frameworks such as COMP Super-

scalar [59] enable deployment on cloud infrastructures and
dynamic provision of resources in a transparent way to end-
users, relieving them from refactoring applications to adapt
to different cloud providers. Such functionality is in line with
what HiCR ascribes to its instance manager. HiCR, however,
integrates this functionality into a complete model that also
includes memory, compute and communication operations.

Other runtime frameworks [11, 14, 26, 27, 33, 54, 66] share
the similarities and differences with HiCR of the aforemen-
tioned approaches. Others [4, 12, 42, 53, 60] allow for general-
purpose programming over multiple devices within a single
node, but do not handle the aspect of distributed comput-
ing. Of these, IRIS [34] supports heterogeneous hardware
while, similar to HiCR, hiding the device characteristics be-
hind a unique abstract model capable of representing a wide
range of hardware. Aside from not supporting for distributed
computation, unlike HiCR, IRIS prescribes task-based pro-
gramming.

The Open Community Runtime (OCR) [38] provides a com-
mon layer for building asynchronous many-tasks runtime
systems. OCR focuses on runtime-specific building blocks,
like tasks and dependencies, and delegates to each particular
implementation (e.g., OCR-Vx [19] for OpenCL) the responsi-
bility for dealing with particular hardware and interconnect
technologies. These aims are similar to that of a Runtime Sup-
port Layer. However, OCR performs no resource provision-
ing while implementations must take on dependency graph
management and data block management. For distributed-
memory implementations the latter are both challenging and
prescribe, to significant degree, the design of any task-based
programming framework based on it [20]. By contrast, the
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HiCR API is generic enough to support any programming
model, tasking or otherwise, while retaining full freedom as
to their implementation.

3 The HiCR Model

User Application

Domain-Specific Library

Runtime System

Runtime Support Library

System Libraries / Plugins

Device Drivers

Figure 1. A layered view of runtime support for user applications. Any of
the layers may invoke functionality of one or more of the layers below it to
support runtime operations.

Given the complexity of modern computing systems, ap-
plications typically rely on a multitude of third-party and sys-
tem libraries. Fig. 1 represents the software stack on which a
user application may operate at runtime. Any of these layers
may rely on functionality provided by one or multiple layers
below it. For example, it may suffice to only require access
to device drivers (low-level interrupts) or system libraries
(e.g.,MPI [40]). These layers are typically accessed by expert
programmers with a deep knowledge of such technologies.
Other users may prefer higher productivity at the expense
of precise execution control and opt for domain-specific li-
braries. Intermediate users may prefer a programming model
that delegates the complexities of device access and conduct-
ing scheduling to an underlying runtime system.
Runtime systems can automatically resolve communica-

tion operations and device management directly, encapsu-
lating the required accesses to the corresponding low-level
libraries. This approach results in limited portability to other
existing or future technologies if the underlying runtime
system is not updated accordingly. However, even if it is,
updates typically imply runtime system API changes which,
in turn, requires refactoring at the application level.
To solve the issue of portability, we propose the concept

of a Runtime Support Layer to serve as a bridge from appli-
cation and runtime systems to underlying low-level system
libraries. This layer provides an implementation-agnostic
API consisting of computation, communication, and system
management building blocks. We propose HiCR as a model
to describe such building blocks.

HiCR comprises a minimal set of components and opera-
tions to describe the semantics of any code running on any
distributed computing system. That is, it assumes the exis-
tence of interconnected computing nodes, each comprised
of processing units connected to local memory. In addition,
the model imposes no semantic prescriptions to the way
an application must be programmed or executed. Instead,

it can be employed equally well by a programming frame-
work such as a tasking runtime system as well as directly
by an application, or indeed by any middleware layer in-
between. By decoupling the runtime support library from
the programming model, we thus enable HiCR to be used
by highly diverse programming approaches: any runtime
system, programming framework, domain-specific library,
or user application may delegate all low-level operations to
HiCR without the need to consider implementation details.
These details are later resolved by device-specific implemen-
tations, or backends, of the HiCR model. In this way, a wide
variety application may be ported to other systems and tech-
nologies simply by selecting different sets of backends.

3.1 Model Description
Fig. 2 shows HiCR’s components and the operations defined
among them. The model components are divided into three
groups: managers, stateless and, stateful.

Managers are componentswhose operations have an effect
on the system. For example, they can trigger computation
operations, the copying of data from one device to another, or
create a new application instance. In addition, only managers
can create instances of other components, both stateless and
stateful.

Stateless components represent information about the sys-
tem or the static description of a function. As such, these
components can be copied, replicated, serialized, and trans-
mitted as required.
Stateful components represent objects with a finite life-

time whose internal state is subject to change. For example,
a running thread or a GPU stream are stateful objects that
may be, at any point in the application’s time, executing,
suspended, or finalized. These components are unique and
therefore cannot be replicated.

3.1.1 Instance Management. The model defines an In-
stance as any subset of the entire distributed system’s avail-
able hardware elements, capable of executing independently.
An instance is typically implemented as an OS process with
full or partial access to a node’s CPU, memory, and accelera-
tor devices. Full access is typical for bare-metal deployments,
while partial access is typical for virtualized, e.g., cloud-based
deployments. The model requires that no two running in-
stances share access to the same devices. Being disjoint, the
only contact point for any two instances is via distributed
memory communication.

All operations involving instances are handled by the In-
stance Manager. The user may use one of, or a combination of,
two ways in which the instance manager enables distribut-
ing execution. The first is to detect already created instances.
This is typically in cases where the underlying library (e.g.,
MPI) initiates all instances at launch-time and the instance
manager allows retrieving them as a list. The second way
is to create new instances during runtime, which is typical
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Figure 2. Diagram showing the components of the HiCR model and the available operations between them. The model is divided in three component groups:
Managers, components whose operations represent an application’s semantic building blocks; Stateless, components that represent static information, and
Stateful, components with an internal state that mutates over time.

for applications that deploy on cloud infrastructures. In this
case, the instance manager, running on the initial instance,
requests (e.g., to a cloud-service provider) the ramp up of
new hosts. Creating a new instance requires passing an In-
stance Template object to the instance manager. This object
encapsulates the description of a required topology plus any
custom metadata accepted by the underlying technology.
This template prescribes the minimal hardware resources
required from the new instance.

Each running instance is semantically equivalent to every
other, although only one of them is considered a root instance.
A Root Instance is either the first instance to be created, or
one within the first group of instances created at launch
time. The sole purpose of designating an instance as root is
to provide a tie-breaking mechanism.

3.1.2 Topology Management. A Topology represents a
full or partial information of an instance’s available hard-
ware devices. It comprises a set of Devices, a representation
of a single hardware element (e.g., a NUMA Domain or a
GPU), containing zero or more memory spaces and compute
resources.
A Memory Space represents a hardware element that ex-

poses explicitly addressable memory segments of non-zero
size. Since memory spaces are meant to inform about a de-
vice’s real memory capacity, the actual physical size is given,
and not the size of the virtually addressable space. For ex-
ample, the system main memory may be exposed as either a
single uniform memory access (UMA) memory space (e.g.,

128GB), or as multiple non-uniform (NUMA) memory spaces
(e.g., 2 x 64GB). For accelerator devices, memory spaces may
include device RAM, addressable caches, as well as high-
bandwidth memories. Future or non-standard memories,
such as large capacity or sequential access, could be rep-
resented as long as they fit the definition here provided.

A Compute Resource represents a hardware or logical ele-
ment, capable of performing computation. Typical examples
of compute resources are CPU cores, each capable of exe-
cuting a function independently. They can also represent
vector and cube cores in an accelerator, capable of executing
discrete kernels and streams. This component contains all
the information necessary to uniquely identify the corre-
sponding processor.

Topologies are discovered by a Topology Manager. A com-
bination of different topology managers, each targeting a
specific technology, can be used to gather the full informa-
tion of all the devices comprising the local instance. This
information can be serialized and broadcast, allowing users
to build a topological picture of the entire distributed system.

3.1.3 Memory Management. Memory management in
HiCR consists of the creation, exchange and destruction of
Local Memory Slots. These slots represent the source and
destination buffers in data transfers within the scope of a
single HiCR instance. They contain the minimum informa-
tion required to describe a segment of memory (e.g., size,
starting address).
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The Memory Manager object exposes a similar interface
to that of the standard C library (i.e., malloc and free) for
the allocation and freeing of local memory slots. However,
while the std::malloc operation defaults to obtaining the
allocation from the system’s main memory, the HiCR model
expands on it, allowing the specification of which memory
space (and thus, the device) to use as source for the allocation.
As long as the memory manager recognizes the specified
memory space as one in which it can operate and there is
enough space in it, the operation will be successful.
The model also allows the manual registration of an ex-

isting memory allocation as a new local memory slot by
specifying its address, size, and the memory space to which
it belongs. The memory manager will record the provided
information and return a memory slot object that can be
used for data transfers. This feature is useful for cases when
the user needs to perform a HiCR operation, such as remote
communication, on an existing allocation received externally
(e.g., from a math library).

3.1.4 Communication Management. All communica-
tion in the model is mediated by the Communication Manager
via its memcpy operation. This operation requires the user to
specify the source and destination memory slots, as well as
the offsets within them and the size of data to communicate.
If the communication manager supports communication be-
tween the memory spaces to which each of the memory slots
belongs, the operation will be initiated. Otherwise, it will be
rejected.
The completion of a memory transfer is not guaranteed

after the function call returns. Instead, the communication
manager exposes a fence mechanism that enables the user to
suspend execution until the expected number of incoming
and outgoing data transfers have been completed.

The communication manager also is in charge of creating
and exchanging Global Memory Slots, local memory slots
that are made accessible to other HiCR instances and can
be used as the source or destination of distributed memcpy
operations. The exchange operation communicates the nec-
essary metadata for remote instances to reach the associated
memory slot.
The exchange of global memory slots is a collective op-

eration: all instances must participate by volunteering zero
or more local memory slots. The operation returns as many
global memory slots as the total amount of local memory
slots exchanged. Each of the resulting global memory slots
are uniquely identified by a tag and key pair, as defined
by the user. The tag element allows for the differentiation
of memory slots communicated in different exchange op-
erations, while the key element distinguishes the resulting
global memory slots.
Only three directions are allowed for the memcpy opera-

tion: Local-to-Local, Local-to-Global, and Global-to-Local. The
first entails two local memory slots and are typically resolved

by regular memcpy (e.g., OpenCL’s clEnqueueCopyBuffer)
operations. The latter involve transfers between instances
where one-sided operations (e.g., MPI_Put and MPI_Get, re-
spectively) may be used. The fence operation can be used to
check for completion in any of these scenarios. On the other
hand, Global-to-Global operations are not permitted in the
HiCRmodel as it entails communication between two remote
instances, neither of which orchestrates the operation.
The model contemplates the existence of heterogeneous

systems where hosts and accelerators employ independent
interconnects. For example, a data transfer operation may
be initiated between a global memory slot representing an
allocation in a remote accelerator and a local memory slot
in a local accelerator. If available, the communication man-
ager will use the accelerator-specific network to satisfy the
request, instead of channeling the transfer through the host
network.

3.1.5 Compute Management. The Compute Manager is
in charge of carrying out computing operations within the
HiCR model. Its primary goals involve managing the lifetime
of processing units, prescribing the format of execution units,
and overseeing the execution of execution states.

A Processing Unit represents a compute resource that has
been initialized and is ready to execute. For example, a pro-
cessing unit representing a CPU core (i.e., a compute re-
source) may be initialized as a POSIX thread with a one-to-
one binding to that core. Similarly, a processing unit may
represent a stream context in an accelerator device. Upon
initialization, the processing unit will keep track of its inter-
nal state; i.e., ready, executing, suspended (if supported), or
terminated.

An Execution Unit is the static description of a function, i.e.,
a procedure that takes inputs, process them, and produces
an output. Examples of execution units are C++ lambda
functions, to be executed by a CPU core, or; pre-compiled
kernels, for accelerators. The semantics of an execution unit
are given by the user, following the format prescribed by the
compute manager.
An Execution State represents the execution lifetime of a

particular instance of an execution unit, including all the
metadata (e.g., inputs, stack, processor state) required to start,
suspend and resume (if supported), and finish its execution.

To carry out the execution, the user asks a compute man-
ager to create a new execution state, derived from a given
execution unit. The user must then assign the execution
state to an available processing unit. Upon assignment, the
processing unit loads the execution state into the processor
(e.g., by performing a context switch), and starts computing
it. This computation is carried out asynchronously, allow-
ing the rest of the application to perform other operations
simultaneously. The completion of an execution state can
be queried either in a blocking or non-blocking fashion and,
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once the execution reaches an end, the execution state is
considered finished and cannot be re-used.

4 Implementation

Built-in Frontends

Built-in Backends

HiCR Core API

Channels Tasking RPCs Data Objects

Application

MPI LPF YuanRong Ascend OpenCL

Boost Pthreads HWLoc nOS-V

System Libraries

Figure 3. The current implementation of the HiCR model. Its components
and operations are exposed in a Core API, which serves as interface between
the user-level applications and the underlying system libraries. The core
API is distributed together with a set of built-in backends, plugins containing
the implementation of subsets of model’s components for several popular
libraries, and frontends, HiCR-based libraries providing common, higher-
level functionalities.

We implemented the HiCR model into an open-source,
publicly available C++-based library1. The library is dis-
tributed together with a set of built-in backend modules.
Backends are ready-to-use plugins that translate a subset
of the HiCR model into implementation-specific operations
that underlying system libraries and device drivers can un-
derstand. These details are hidden behind HiCR’s abstract
API, allowing a HiCR-based program to preserve its seman-
tics across a diversity of devices. Fig. 3 shows how these
components serve to relate the user application code to the
underlying system libraries.
Built-in backends and their system library dependencies

can be included in the compilation chain by configuring
them in HiCR’s meson-based build system during setup time.
Any future or third-party backends can be supported by
manually adding the corresponding compilation flags. Built-
in backends are described in Section 4.2; we first discuss the
HiCR interface.
Frontends are C++ libraries that contain higher-level out-

of-the-box functionality that may be useful for a wide range
of applications. The goal of frontends is to facilitate the
adoption of HiCR, minimizing the need for users to use
its low-level core API directly by providing ready-to-use
features such as communication mechanisms, distributed
deployment, and topology discovery. Since these libraries
are reliant exclusively on calls to the HiCR Core API, they
1https://github.com/Algebraic-Programming/HiCR

remain implementation-agnostic and their operations can
be supported by different backends. An up-to-date list of
existing frontends can be found in HiCR’s

4.1 Programming with HiCR
All the components of the HiCR model are implemented as
C++ abstract classes. As a result, they cannot be instanti-
ated directly. Instead, each of the backends derives them into
complete classes by implementing their pure virtual func-
tions. The user is therefore required to first instantiate the
appropriate backends and then pass them to a HiCR-based
application as inputs.

Fig. 4 shows an example of backend instantiation, prior to
running a HiCR application. The example starts by initializ-
ing the MPI library and passing an MPI communicator object
to the MPI instance manager constructor (Line 3). Then, it in-
stantiates theHWLoc topology and memory managers (Lines
6-9), which requires passing of an hwloc_topology_t ob-
ject as argument. Finally, it instantiates the Pthread-based
communication and compute managers (Lines 12 and 13).
These managers are passed by reference or pointer to a HiCR
application, which receives them as abstract classes and thus
remains agnostic to the specific choice of backends.

1 // Creating MPI instance manager
2 MPI_Init (&argc , &argv);
3 HiCR::MPI:: InstanceManager im(MPI_COMM_WORLD);
4
5 // Creating HWLoc topology and memory managers
6 hwloc_topology_t hwlocObj;
7 hwloc_topology_init (& hwlocObj);
8 HiCR::HWLoc:: TopologyManager tm(& hwlocObj);
9 HiCR::HWLoc:: MemoryManager mm(& hwlocObj);
10
11 // Creating Pthread -based Managers
12 HiCR:: Pthreads :: CommunicationManager cmm;
13 HiCR:: Pthreads :: ComputeManager cpm;

Figure 4. Example of backend instantiation. The resulting manager objects
are passed to a HiCR application which is built exclusively with calls to
abstract HiCR classes.

4.1.1 Example: Inter-Device Communication. Fig. 5
shows an example where a given message buffer, stored in
a local memory slot, is transferred to all memory spaces
at all devices. Since this and the following examples repre-
sent pure HiCR applications, all manager objects are point-
ers to abstract HiCR classes, which are agnostic to imple-
mentation decisions. For instance, the code obtains the sys-
tem’s hardware topology from tm, a pointer to the abstract
HiCR::TopologyManager class and stores it in aHiCR Topology
object (Line 2). The communication operations are performed
within for loops (Lines 5 and 6) that iterate among all the
memory spaces within all detected devices in the topology
and, for each of them, it allocates a new local memory slot
(Line 7) and starts a data transfer operation (Line 8). Finally,
it makes sure all the communication operations have termi-
nated (Line 10) before returning.

6
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1 // Obtain system 's CPU topology
2 HiCR:: Topology t = tm->queryTopology ();
3
4 // Broadcast message to all local memory spaces
5 for (const auto& d : t.getDevices ())
6 for (const auto& s : d.getMemorySpaces ()) {
7 auto dst = mm->allocateLocalMemorySlot(s, size);
8 cmm ->memcpy(dst , 0, message , 0, messageSize);
9 }
10 cmm ->fence(); // Wait for operations to finish

Figure 5. This example copies a message along all the memory spaces
detected by the topology manager. These memory spaces may belong to
one or multiple different physical devices on a given node.

1 // Initializing execution in all compute resources
2 std::vector <HiCR:: ProcessingUnit > ps;
3 for (const auto& d : t.getDevices ())
4 for (const auto& r : d.getComputeResources ()) {
5 auto p = cpm ->createProcessingUnit(r);
6 auto s = cpm ->createExecutionState(p, e);
7 cpm ->initialize(p);
8 cpm ->execute(p, s);
9 ps.push_back(p);
10 }
11
12 // Awaiting finalization
13 for (const auto& p : ps) cpm ->await(p);
14 for (const auto& p : ps) cpm ->finalize(p);

Figure 6. This example runs a given execution unit on all of the available
compute resources for parallel execution.

4.1.2 Example: Parallel Execution. Fig. 6 shows an ex-
ample where a given execution unit (e) is simultaneously
deployed on a set of compute resources. The code first ini-
tializes a processing unit for each of the compute resources
provided (Line 5), along with an execution state (Line 6), and
then starts their execution (Lines 7 and 8). The application
then waits for all processing units to finish and terminates
the execution states (Lines 13 and 14), freeing the memory
allocated for them.

4.1.3 Example: Distributed Deployment. Fig. 7 shows
an example of instance management operations using the
HiCR Core API. This example checks whether the desired
number of instances have been created at launch time (Line 9).
If not, it tries to create, at runtime, however many of them
are found missing (Line 14). The new instances, if any, are
created based on a template that makes sure they satisfy a
given set of requirements (reqs), which may include, but are
not limited to, hardware or network topology specifications.
This snippet is only executed by the root instance (Line 2)
to ensure that it runs exactly once.

4.2 Built-in Backends
HiCR can be extended to support any new technologies that
satisfy a subset of the core API by developing a new backend
plugin for them. Additionally, we distribute with HiCR a col-
lection of ready-to-use built-in backends to support several
well-established technologies and devices. Table 1 shows the

1 // If we are not root , return immediately
2 if (!im->getCurrentInstance ().isRoot ()) return;
3
4 // Getting launch -time instances count
5 const auto instances = im->getInstances ();
6 auto current = instances.size();
7
8 // Return if the desired instances already exist
9 if (current >= desired) return;
10
11 // Creating required instances at runtime
12 auto required = desired - current;
13 auto temp = im->createInstanceTemplate(reqs);
14 im->createInstances(required , temp);

Figure 7. This example makes sure there are desired number of instances
by either having been initially created by an external launcher, or by creating
new instances at runtime.

Backend Topology Instance Communication Memory Compute
MPI X X X
LPF X X
YuanRong X
HWLoc X X X
ACL X X X X
OpenCL X X X X
Pthreads X X
Boost X
nOS-V X

Table 1. This table lists the backends currently provided and the subset of
the HiCR model that they implement.

current list of the built-in backends and the manager classes
they implement. We chose to provide these backends as they
represent a mixture between commonly used technologies
with more research-oriented ones.

The MPI backend implements operations for communica-
tion, memory and instance management using the MPI spec-
ification. Its instance manager allows querying how many
HiCR instances (i.e., MPI processes) were created at launch
time and the unique ID for each of them. The backend instan-
tiates memory slots as MPI windows to serve as source and
destination for MPI one-sided communication operations
and translates distributed HiCR memcpy operations into the
corresponding one-sided MPI_Put or MPI_Get operations.
The LPF backend provides support for Lightweight Par-

allel Foundations [57], a communications library following
the BSP model [62] for parallel computation. LPF operates
mainly by the use of one-sided put and get communica-
tion calls whose completion is realized through synchro-
nization calls. This backend uses a synchronization engine
implemented on top of the Infiniband Verbs API [30, 31] and
provides lightweight synchronization mechanisms based on
completion queues.

YuanRong [16] is a serverless platform for general-purpose
workloads, and tailored for applications running on cloud
infrastructures. The serverless paradigm prescribes that ap-
plications should be organized into a set of functions that
can be dynamically created based on the incoming workload
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(e.g., numbers of incoming requests). This backend enables
launching a HiCR instance as a serverless function at run-
time.

The HWLoc backend implements topology discovery func-
tionality for CPU-based hosts based on the Portable Hardware
Locality [51] library. The topology includes a hierarchical
view on CPU resources (i.e., sockets, cores, symmetric multi-
threading) and their memory and cache structures. It also
provides a notion of locality, allowing for determining in
which NUMA domain each of the compute resources is lo-
cated and allocating memory on any such domains.
The ACL backend provides support for Huawei NPU ac-

celerators [28, 29], exposing a list of such devices available
in the host system and enabling memory allocation both on
accelerators’ high memory bandwidth (HBM) memory, as
well as on the host memory. It allows data motion from either
the host to the device and vice-versa, between allocations
within the same device, or; between two devices. It also en-
ables the execution of device kernels, building event-based
dependency graphs, and querying their progress.
The OpenCL backend enables the discovery and use of

both CPU and accelerator devices that support the OpenCL
[47] API. This API offers many of the topology, memory,
communication, and computation management support for
heterogeneous devices.

The Pthreads backend enables threading-based parallelism
using the POSIX Threads library [52]. Its compute manager
enables the creation of processing units, each one of them rep-
resenting a system-scheduled thread and mapped 1-to-1 to a
CPU core or hyperthread, detected as compute resources by
the HWLoc backend. The communication manager employs
the standard C memcpy operation, and guarantees correct
fencing using mutual exclusion mechanisms.

The Boost backend defines execution units as single (lambda)
functions, including the possibility of passing a capture list
and a closure argument. It relies on the Context library from
Boost C++ [10] to instantiate execution units into coroutine-
based execution states. These coroutines behave like normal
functions, except that they can be suspended and resumed
at arbitrary points without the intervention of the OS sched-
uler.
The nOS-V backend enables the use of nOS-V [3], a low-

level threading library that enables collaborative co-execution
of independent processes. nOS-V features a system-wide
scheduler that assigns each task to its own kernel-level
thread, all located in a common shared pool across multiple
processes.

4.3 Built-in Frontends
Frontends are ready-to-use libraries that expose higher-level
features for communication, execution and distributed com-
puting. The ones presented here are fully based on calls
to the HiCR Core API, hence preserving the benefits of an

implementation-agnostic approach. Here we discuss their
rationale and implementation.

The Channels frontend is a communication library tailored
for frequent and persistent transfer of small data messages
across distributed instances. With this frontend, we target ap-
plications that operate on a request basis and typically carry
a quality-of-service (QoS) requirement of a low-latency re-
sult turnover. Channels operate by exchanging pre-allocated
circular buffers between the sender and receiver instances.
These buffers will serve as destination for the transmitted
messages. By pre-allocating the buffers, the producer knows
where to push the next message, as long as the buffer has not
filled up. At that point the producer may not send any more
messages until the consumer notifies that a message has been
consumed. This logic enables both ends to decouple transfer
and synchronization messages, allowing for both minimal
per-message handshaking as well as throughput-oriented
channel implementations.
The library supports both Single Producer, Single Con-

sumer (SPSC) andMultiple Producer, Single Consumer (MPSC)
paradigms. To support multiple producers, the library offers
two operating modes: locking, where a collective exclusive
access guarantees a shared channel does not overflow, and
non-locking, where dedicated buffers per producer are em-
ployed, eliminating the expensive collective exclusive access,
but increasing memory requirements.

The Data Object frontend is a communication library, tai-
lored for sporadic communication of large data objects, such
as multi-dimensional tensors. This library allows for per-
forming communication operations without the need of pre-
exchanged buffers. Instead, it works by creating a Data Ob-
ject which represents a block of data contained inside a local
memory slot, and making it remotely accessible to any other
instance by a call to a publish operation. Upon publication,
the caller obtains a unique data object identifier that can be
exchanged with other instances via the Channels frontend.
To access a published data object, other instances perform
a getHandle operation, which takes a unique identifier as
argument and returns a handle to the remote object. This
handle only represents the required metadata to retrieve the
remote object. The data itself can be obtained with a call
to get, which takes the handle as argument. This function
initializes an asynchronous data transfer whose completion
can be fenced later using a mechanism similar as described
in Figure 5.

The RPC frontend offers mechanisms for the registration,
listening, and execution of Remote Procedure Calls. This
interface is crucial for the initial coordination of execution
among multiple instances, especially in the context of appli-
cations that rely on instance creation at runtime. RPCs can
be used to exchange information about the instance’s topol-
ogy information, establish the creation of communication
channels, and to coordinate task execution. To execute an
RPC, the function must be pre-registered on the receiving
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instance. Then, the receiving instance must then enter a lis-
tening state either before or after the caller instance launches
an RPC request. After execution, the receiving instance may
produce a return value that will be automatically returned
to the caller.

The Tasking frontend contains building blocks to develop
a task-based runtime system. It provides basic support for
stateful tasks with settable callbacks to notify when the task
changes state, e.g., from executing to finished. It also contains
support for stateful worker objects. These objects contain
a simple loop that calls a pull function, i.e., a user-defined
scheduling function that should return the next task to ex-
ecute (or a null pointer, if none is available). The frontend
requires specifying two, possibly distinct, computemanagers:
one for the worker objects and another for the tasks. In this
way, the frontend allows, for example, managing scheduling
on the CPU, while executing tasks directly on an accelera-
tor device. This frontend also contains an interface to OVNI
[43], an instrumentation library to register execution traces.
These traces are collected regardless of the computing back-
end selected and can be loaded into any performance analysis
tool.

5 Experimental Evaluation
Here we present experimental results based on reproducible
test cases programmed exclusively with calls to the HiCR
API. The goal of these experiments is to demonstrate the
adaptability of HiCR-based applications to different execu-
tion environments by selecting the appropriate backend for
each case, without requiring changes in its source code. The
source code required to reproduce these experiments is avail-
able in HiCR’s public repository.

5.1 Test Case 1: Communication Benchmark
This test case involves launching two instances communicat-
ing through two opposing single-producer single-consumer
channels for bi-directional communication. It allocates a
short message buffer at the consumer side with a fixed single-
message capacity. After sending a message (ping), the sender
waits on receiving the echoedmessage (pong). This exchange
forces a ping-pong pattern (similar to a one-sided version of
the two-sided NetPIPE [56]), which results in either latency-
bound results when communicating small messages, or throughput-
bound results for large messages.

We designed the benchmark to compare the performance
of two backends: (a) the LPF backend, relying on its zero
engine [36] that employs primitives for Infiniband networks,
and (b) the MPI backend. All tests were conducted on a
cluster equipped with a Mellanox EDR 100 Gbps Infiniband
fabric. We run the test with a range of message sizes from 1
byte to ≈ 2.14 Gigabytes, repeating each test 10 times and
showing the standard deviation vertically. The results of
the ping-pong benchmarks are shown in Fig. 8, measuring

the goodput 𝐺 (𝑠) (i.e., effective throughput) across different
message sizes.
For small messages, the LPF backend achieves a 70× in-

crease in goodput compared to the MPI-based one. We at-
tribute this to LPF making direct use of hardware-enabled
Infiniband completion queues that minimizes handshaking.
This extends beyond what the MPI standard currently allows,
similarly to other proposed optimizations [9, 55]. The MPI
backend employs standard one-sided MPI primitives that in-
duce less efficient handshaking. The larger messages (> 109
bytes) are far less affected by handshaking latencies, and
therefore indeed the goodput of both backends converges to
∼80% of the maximum theoretical throughput of the inter-
connect: 100 Gbps.

Figure 8. Observed goodput for ping-pong benchmarks using the LPF (top
series) and MPI (bottom series) backends over multiple message sizes. LPF
relies on IBverbs directly while MPI relies on OpenMPI RMA primitives.

5.2 Test Case 2: Heterogeneous Inference
This test case implements a simple forward inference pipeline,
mimicking typical AI inference workloads. We implemented
a HiCR application featuring a neural network that takes an
encoded image as input and outputs the most likely digit
(from 0 to 9) that they represent. We used the MNIST [39]
dataset to train the network and saved its weights for later
use during the inference. We run the application passing to
it three different backends: Pthreads, ACL, and OpenCL. For
each backend, we provide an appropriate kernel function:
the Pthreads variant runs OpenBLAS [49] dense linear al-
gebra kernels; the ACL variant uses pre-compiled kernels
provided with the NPU device, and; the OpenCL variant uses
a naïve version of the required kernels. We conducted ex-
periments on two computing nodes: (A) containing an Intel
Xeon W-1270 CPU and an Intel P630 GPU, and (B) contain-
ing a Huawei Kunpeng 920 CPU and a Huawei 910A NPU.
To prove the correctness, we developed an ad-hoc C++ im-
plementation of the test using OpenBLAS kernels directly
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Device Node Backend Accuracy img-0 score
W-1270 A pthreads 94.64% 9.921433449
P630 A opencl 94.64% 9.921431541
Kunpeng 920 B pthreads 94.64% 9.921433449
Huawei 910A B acl 94.64% 9.921875000

Table 2. Inference results. The table reports the percentage of correct
predictions over the entire test set (10’000 images), and the highest score
computed for img-0 of the test set.

without the use of HiCR. We used the latter to verify that all
variants produce consistent results on each architecture.

Table 2 presents the inference results, showing the predic-
tion accuracy for each architecture and backend, and also
the highest score given to the most probable digit in the first
image of the set (img-0). The table shows that, while all back-
ends show consistent accuracies, they still produce slight
variations in precision. These variations can be attributed
to differences in the floating-point precision of the devices
and to differing orders of computations in the compute ker-
nels. Despite these, this test shows that a given HiCR-based
application can be executed equally on either CPU or accel-
erator devices by providing the appropriate backend and the
kernels to run its operations.

5.3 Test Case 3: Fine-Grained Tasking
This test case computes the Fibonacci number 𝐹 (𝑛) using
a naïve approach, i.e., recursively computing 𝐹 (𝑛 − 1) and
𝐹 (𝑛−2) as independent tasks until reaching 𝐹 (1) and 𝐹 (0). To
schedule the task dependency graph, we developed a HiCR-
based lightweight scheduler2 that assigns tasks to worker
threads as they become available. Since we use the exact
same setup for all runs, this test is designed to compare the
compute performance between different HiCR backends in
a way that measures the overheads of context switching.
We employ two HiCR variants: (a) one using the nOS-V

threading backend for both worker and tasks management,
and; (b) another using Pthreads + Boost for thread-based
workers and coroutine-based tasks, respectively. For both
variants, we compute 𝐹 (24) with an expected result of 46 368,
requiring the execution of 150 049 tasks in total. We ran
benchmarks on a dual-socket 22-core Intel Xeon Gold 6238T
server with hyperthreading enabled, and report the best
measured time among 10 runs. We determined that using
8 worker threads that are pinned to individual cores in the
same socket yields the best performance for both variants.
We used the OVNI library to obtain the core execution

traces and visualize them with Paraver [50]. Fig. 9 shows
the traces for the best result for each variant, where nOS-V
and Pthreads + Boost backends finish execution in 1.34 and
0.21 seconds, respectively. This example demonstrates that
user-level context switching between fine-grained tasks can

2https://github.com/Algebraic-Programming/TaskR

Figure 9. Execution timelines for the Fibonacci example that executes
150 049 tasks using 8 cores. Each horizontal line represents the timeline of
a CPU core, with solid traces indicating meaningful work and empty spaces
indicating scheduling overhead.

Figure 10. Execution timelines for the Jacobi example running 500 iterations
using 1 × 2 × 22 = 44 threads of a Intel Xeon Gold 6238T system with
hyperthreading enabled (but here unused).

greatly reduce overheads compared to delegating scheduling
decisions to the OS.

5.4 Test Case 4: Coarse-Grained Tasking
Consider a three-dimensional iterative heat equation solver
that uses the Jacobi method and a 13-point averaging stencil
with Manhattan distance one and a finite element grid of
size 7043 elements. Our test case divides the grid, consisting
of a single contiguous allocation, across 𝑙𝑥 × 𝑙𝑦 × 𝑙𝑧 local
subgrids, and assigns each to a unique worker thread. Each
thread thus executes an expensive local computation that
dominates the total runtime, followed by communication of
the subgrid halos. This process repeats for a set number of
iterations.

We compare the nOS-V and Pthreads+Boost variants over
500 iterations of the solver and report the best measured
time among 20 runs. For this case, we employ the same dual-
socket system as in Section 5.3 and achieve best performance
using a 1 × 2 × 22 thread grid, thus spawning a total of 44
threads that are each assigned a core; i.e., not using hyper-
threading. Fig. 10 shows the resulting traces for the best
run for each variant, where the nOS-V finishes execution
in 40.5 s (43.1 GFlop/s), and for Pthreads + Boost, in 39.9 s
(43.7 GFlop/s). In this case, we used HiCR to show that the
effects of scheduling overheads are minimal when running
coarse-grained tasks, regardless of the choice of backend.
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Figure 11. Strong and weak scaling of the Jacobi example using up to 4
nodes of dual-socket Intel Xeon Gold 6238T CPUs. Each node has 22 cores
per socket with hyperthreading enabled (but here unused).

The benefits of nOS-V may hence be exploited without no-
ticeable performance impact.
We also evaluate the impact of the computing backend

choice on scaling and communication overheads on up to
4 nodes, where each node consists of the same dual-socket
system previously used. To run this test, we scale the num-
ber of HiCR instances with the number of nodes where each
instance handles one rectangular cuboid resulting from split-
ting the mesh in 𝑝𝑥 × 𝑝𝑦 × 𝑝𝑧 parts, where 𝑝𝑥𝑝𝑦𝑝𝑧 = 𝑝 the
total number of nodes used. After each iteration, halos are
exchanged via distributed-memory communication through
the LPF Infiniband backend from Section 5.1. We observe
the best performance using a 𝑝 × 1 × 1 node mesh, which,
combined with the thread mesh from the previous exper-
iment, results in a logical 𝑝 × 2 × 22 mesh. Fig. 11 shows
the resulting weak and strong scaling for both variants. For
weak scaling, we increase the number of elements to 8803
for 𝑝 = 2, and to 10563 for 𝑝 = 4.

Pthreads+Boost consistently achieves a better performance
than nOS-V in all cases, which, after analysis, we attribute
to the use of nOS-V resulting in eager polling of the comple-
tion status of distributed-memory communication. This, in
turn, causes threads interfering with one another during the
communication phase.

6 Conclusions and Future Work
The latest developments in distributed heterogeneous tech-
nologies present new challenges for programmers. Devel-
oping applications in a way that they can adapt to and stay
current with the latest and upcoming hardware can be a
daunting endeavor. We have presented a model to minimize
this effort, enabling the expression of program semantics
that are independent from specific underlying system tech-
nologies, bypassing the complexities of writing technology-
specific code. Contrary to other solutions, HiCR describes

a set of abstract operations without prescribing particular
programming models or paradigms, and without making any
other implementation decisions. These facets make HiCR a
suitable model for a thin Runtime Support Layer that resides
between DSLs, libraries, and programming frameworks on
the one hand, and raw system technologies on the other.

We have shown empirically that HiCR programs can exe-
cute on multiple architectures and employ different support-
ing libraries, simply by switching out the underlying HiCR
backends– and that doing so preserves the overall program
semantics. While these experiments also show that appli-
cations may be implemented directly on top of the HiCR
model, we posit its use as a Runtime Support Layer is of
higher value.
Future work includes extending the model for discovery

of the interconnect topology, associating latency and band-
width capabilities to both memory spaces (e.g., in NUMA
systems) and interconnect links [57], and the inclusion of
(distributed) file management, multi-user job allocation, fault
tolerance, and security isolation.
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