
ar
X

iv
:2

50
3.

05
40

8v
2

 [
cs

.D
C

]
 5

 J
un

 2
02

5

EFFICIENT PARALLEL SCHEDULING FOR
SPARSE TRIANGULAR SOLVERS

TONI BÖHNLEIN†, PÁL ANDRÁS PAPP†, RAPHAEL S. STEINER†,
CHRISTOS K. MATZOROS, AND ALBERT-JAN N. YZELMAN

{toni.boehnlein; pal.andras.papp; raphael.steiner; albertjan.yzelman}@huawei.com
christos.konstantinos.matzoros@h-partners.com

Huawei Research Center Zurich, Computing Systems Lab,
Thurgauerstrasse 80, 8050 Zurich, Switzerland

Abstract. We develop and analyze new scheduling algorithms for solving sparse triangular
linear systems (SpTRSV) in parallel. Our approach produces highly efficient synchronous
schedules for the forward- and backward-substitution algorithm. Compared to state-of-the-art
baselines HDagg [ZCL+22] and SpMP [PSSD14], we achieve a 3.32× and 1.42× geometric-
mean speed-up, respectively. We achieve this by obtaining an up to 12.07× geometric-mean
reduction in the number of synchronization barriers over HDagg, whilst maintaining a
balanced workload, and by applying a matrix reordering step for locality. We show that our
improvements are consistent across a variety of input matrices and hardware architectures.

Contents

1. Introduction 1
2. Background 5
3. The GrowLocal scheduler 6
4. Acyclicity-preserving graph coarsening 8
5. Reordering for locality 10
6. Experimental setup 10
7. Evaluation 12
8. Conclusion and future directions 17
Appendix A. Tables of matrices 18
Appendix B. Time and space complexity of GrowLocal 23
Appendix C. Further discussion 26
References 26

1. Introduction

Systems of linear equations are ubiquitous and solving them fast numerically with high
accuracy is essential to engineering, big data analytics, artificial intelligence, and various
scientific fields. Key techniques in scaling to ever larger linear systems have been exploiting
the sparsity of non-zero coefficients in modern algorithms, as well as leveraging the multi-core
or multi-processor architectures of high-performance computing systems. However, whilst
sparsity reduces computational load, the typically irregular distribution of non-zero elements
complicates the development of efficient parallel algorithms, as the lack of structure hinders
workload balancing and limits the ability to minimize communication between processors.

Date: June 8, 2025.
Key words and phrases. Sparse triangular linear system solve, SpTrSV, SpTrSM, forward- and backward-

substitution algorithm, barrier list scheduler, synchronous parallel algorithm.
†Joint first authors; listed in alphabetical order.

1

https://arxiv.org/abs/2503.05408v2

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 2

In this paper, we concern ourselves with solving sparse triangular systems of linear equations
(SpTRSV) using parallel machines; i.e., solving a linear system Lx = b, where L is a sparse
triangular matrix and b is a dense vector. Although solving sparse triangular linear systems
marks a special case, it often arises as an important step in procedures solving more general
linear systems. Some concrete examples are (sparse) LU, QR, and Cholesky decompositions,
Gauß–Seidel, and so forth. Efficient parallel-computation schedules for SpTRSV are of
particular importance in applications where the same sparsity pattern is used repeatedly. Such
is the case in simulations of various physical systems, for instance, ones that are based on the
finite element method on a fixed mesh.

One of the main methods of solving SpTRSV is the forward-/backward-substitution algo-
rithm. An execution of the algorithm on an instance may be captured by a directed acyclic
graph (DAG), with the vertices corresponding to the rows of the matrix and directed edges
representing dependencies imposed by the non-zero entries, see Figure 1.1. Finding a parallel
execution of the forward-/backward-substitution algorithm directly corresponds to solving the
parallel-scheduling problem on the corresponding DAG.

a
b
c
d
e
f

a b c d e f

(a) Sparse lower triangular
matrix (6× 6)

a

b

cd

f e

(b) Correspond-
ing DAG

Figure 1.1. A sparse lower triangular matrix (a) and its corresponding DAG
for the forward-substitution algorithm (b). Each row of the matrix corresponds
to a vertex in the DAG. An edge from vertex u to vertex v exists if and only if
there is a non-zero entry in column u of row v in the matrix. The dotted lines
in Figure (b) separate the wavefronts of the DAG.

In order to generate an efficient parallel schedule for the algorithm, one needs to:
(i) balance workload across machines, and
(ii) limit coordination overhead.

Satisfying both of these needs simultaneously has proven to be challenging due to the
irregular interdependence of computed values and the fine-grained nature of the problem. Early
algorithms include so-called wavefront schedulers [AS89, Sal90], which repeatedly schedule all
computations whose prerequisites are met, known as the wavefronts, cf. Figure 1.1b, followed
by a synchronization barrier. They, however, suffer from large overhead stemming from
frequent global synchronization [PSSD14]. Similarly, early asynchronous approaches such as
self-scheduling [SMB88] had the drawback of incurring overheads due to numerous fine-grained
synchronizations [RG92].

In a breakthrough paper, Park et al. [PSSD14] reduced coordination overhead by combining
these earlier ideas. Their scheduler SpMP, which remains a competitive baseline to date,
is in essence an asynchronous wavefront scheduler: it allows machines to move onto the
next wavefront if and only if all requisites have already been met for its portion of the next
wavefront. They also developed a fast approximate transitive reduction to reduce the number
of synchronization points further. An alternate reduction in synchronizations has been made
by Yilmaz et al. [YSAU20] by enforcing a bound by which machines may be out of sync.

For synchronous schedulers, efforts have been directed towards increasing the computational
load between synchronization barriers, thus decreasing the number of global synchronizations.

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 3

For instance, Cheshmi et al. [CKSD18] devise such methods for triangular matrices of a
special structure, arising in Cholesky decompositions. For general sparse triangular matrices,
a state-of-the-art baseline is the recent scheduler HDagg of Zarebavani et al. [ZCL+22]. This
algorithm develops efficient schedules by gluing together consecutive wavefronts if and only if
a balanced workload can still be maintained and by pre-applying a DAG coarsening technique.

1.1. Our contribution. Our work continues along the same path of reducing the number
of synchronization barriers. We present and analyze a new scheduling algorithm named
GrowLocal which is tailored specifically towards the SpTRSV application. In our experiments,
we establish that this algorithm produces significantly superior parallel schedules compared to
the baseline methods. Specifically, GrowLocal achieves a reduction in execution time of 1.42×
compared to SpMP and of 3.32× compared to HDagg, on the SuiteSparse Matrix Collection
benchmark [DH11] used by previous studies, see Figure 1.2. We further evaluate GrowLocal
on pre-processed variants of the SuiteSparse matrices motivated by applications, and observe
speedups of up to 1.80× and 2.20× over SpMP and HDagg, respectively. On synthetic random
matrices that are hard to schedule by design, the difference to the baselines is even larger: the
algorithm achieves a speed-up of 2.50× compared to SpMP and 10.12× compared to HDagg
in execution time.

GrowLocal SpMP HDagg

0.25
0.5

1
2
4
8

16
32

Sp
ee

d-
up

 o
ve

r S
er

ia
l

Figure 1.2. Geometric mean and interquartile ranges of speed-ups over Serial
of our algorithms on the SuiteSparse Matrix Collection [DH11] on an Intel x86
machine using 22 cores.

The algorithm obtains these speed-ups by significantly reducing the number of synchro-
nization barriers required: we report a 12.07× reduction in the number of barriers relative
to HDagg on the SuiteSparse data set, whilst maintaining a good workload balance. The
results also show that our scheduler provides consistent improvements over several different
computing architectures and types of input matrices. The running time of the scheduling
algorithm itself is also comparable to the state-of-the-art baselines, making it a viable tool for
various applications.

In summary, the main contributions of our paper are:
• a novel algorithm for generating efficient parallel schedules for SpTRSV execution;
• extensions of previous DAG coarsening techniques that enhance the schedules, and a

short theoretical proof that these preserve acyclicity; and
• experiments confirming that the above schedulers achieve significant speed-ups over

the SpMP and HDagg baselines, on various architectures and data sets, including an
ablation study of the individual techniques proposed.

1.1.1. GrowLocal scheduling algorithm. There are numerous prior works on parallel DAG
scheduling in the literature. When the number of cores is limited, the best results are often
achieved by so-called list scheduling algorithms [Gra69, ACD74, HCAL89, RVG02, MSQ03],
which schedule the vertices in a topological order according to some priority function [WS18].

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 4

On the other hand, DAG scheduling with barrier synchronization is a somewhat different
setting, and there are only a few previous works that address this problem. One state-of-the-art
example here is the HDagg algorithm mentioned before [ZCL+22], which can also be interpreted
as scheduler for general DAGs. Besides this, the idea of adapting list schedulers to a barrier
synchronization setting has also been explored recently by Papp et al. [PAKY24] for abstract
bulk-synchronous-parallel (BSP) scheduling.

Our GrowLocal algorithm takes a rather different approach than these previous methods,
but also incorporates some of their underlying strengths. On a high level, GrowLocal considers
a parameter α, and tries to form the part of the schedule until the next synchronization barrier
(the next so-called superstep) by assigning approximately α vertices to each of the cores before
this next barrier. The parameter α is then iteratively increased, examining larger parts of the
DAG as the potential next superstep, as long as this is possible while also ensuring a sufficient
amount of parallelization between the cores.

During the development of the schedule, the algorithm always maintains the set of vertices
that are ready to be executed, i.e., all their parents have been computed. At any point during
the algorithm, if we consider the current superstep, such a ready vertex v may be executable
either on any of the cores (if all parents of v were computed before the last barrier), only on a
specific core p (if a parent of v was computed on p since the last barrier), or on none of the
cores (if we computed parents of v on multiple cores since the last barrier). When selecting the
next vertices to assign to a core p during our algorithm, GrowLocal first prioritizes vertices that
can only be executed on the core p before the next barrier. This is inspired by the scheduler
of [PAKY24], and it ensures that we can compute significantly more vertices before having to
insert a new barrier.

Apart from this, GrowLocal simply selects vertices to assign to a core based on their IDs
in order to group neighboring vertices onto the same core and superstep. This leads to
significantly better locality for the developed schedule than in case of, e.g., list schedulers, and
this has a large positive impact on the overall performance of the SpTRSV computation.

1.1.2. Coarsening. Graph coarsening techniques are widely applied in graph partitioning
tools [IKS75, KAKS97, Sch20], where they greatly reduce the size of the graph and improve
data locality. These techniques can also be applied to DAG scheduling [PSSS21, ZCL+22],
where they can further help to reduce the number of synchronization steps on top of the
aforementioned benefits. Following the coarsening, the scheduling algorithm is applied to the
coarse graph and the resulting schedule is subsequently pulled back to the original graph to
obtain the final schedule. In order to produce a valid scheduling problem, the coarsening
methods are required to preserve the acyclicity of DAGs. Methods that fulfill this criteria have
been studied in several works before, see, for example, [CLB94, FER+13, HKU+17, ZCL+22]
and references therein.

In Section 4, we introduce the concept of cascades to generalize the coarsening techniques
utilized in [CLB94, §4] and [ZCL+22, §IV.B]. We then formally prove that coarsening techniques
based on cascades always preserve acyclicity. In Section 7.3, we evaluate the effect of the
coarsening algorithm developed in Section 4 on our scheduling algorithm, GrowLocal.

1.1.3. Reordering. Besides the algorithms above, we also apply a matrix reordering step to
drastically improve data locality during the SpTRSV computation. Specifically, once the
schedule is developed, we symmetrically permute the matrix according to the schedule, ensuring
that values computed after each other on the same core are close to each other in this permuted
representation. This idea has already been explored by Rothberg–Gupta in the 1990s [RG92],
but it has not been applied in modern SpTRSV baselines, which instead try to make use of
existing data locality when deriving a schedule.

1.1.4. Block parallel scheduling. A known optimization technique for parallel SpTRSV exe-
cution is to break the lower triangular matrix into blocks [AS89, May09, AYU21, YSAU20].
These blocks may be on the diagonal, which corresponds to a smaller instance of (sparse)

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 5

triangular solve, or completely off the diagonal, which corresponds to a (sparse) matrix-vector
multiplication. The separation of the easily parallelizable (sparse) matrix-vector-multiplication
blocks from the hard to parallize (sparse) triangular blocks has been particularly impactful for
GPU implementations [LLH+16, LNL20].

In this paper, we use this block decomposition to run the GrowLocal scheduling algorithm
in parallel on each (sparse) triangular block. The resulting synchronous schedules can then be
combined one after the other (with a synchronization barrier between individual schedules)
to a schedule for the whole triangular matrix. This leads to a super-linear speed-up in the
scheduling time whilst having a moderate effect on the parallel SpTRSV solve time.

1.2. Additional related work. Besides the forward-/backward-substitution algorithm, there
are also other methods for solving sparse triangular systems, for example inversion. For this
method, we mention the memory-optimal algorithms developed in previous works [AS93, PA92].

2. Background

2.1. Graph notation. We model our computations as a directed acyclic graph (DAG)
G = (V, E), which consists of a set of vertices V and a set of directed edges E ⊆ V × V .
For any vertex v ∈ V , the sets of vertices {u | (u, v) ∈ E} and {u | (v, u) ∈ E} are called the
parents of v and the children of v, respectively. The in- and out-degree of v, denoted by
deg−(v) and deg+(v), respectively, are the number of parents and children of v. The degree
of v, denoted by deg(v), is the sum of its in- and out-degree. If a vertex of the DAG has no
parents/children, then it is called a source/sink vertex, respectively. The DAG in our model
is also complemented by vertex weights ω : V → Z>0 to indicate the compute cost of each
operation.

2.2. Problem definition and notation. When solving sparse triangular systems, we are
given a triangular matrix A = (Ai,j)i,j=1,...,n ∈ Rn×n, a dense vector b = (b1, . . . , bn)T ∈ Rn,
and the goal is to solve the equation Ax = b for the vector x = (x1, . . . , xn)T ∈ Rn. We
assume that A is non-singular, such that all its diagonal elements are non-zero. In case of a
lower triangular matrix A, there is a natural forward-substitution algorithm for the problem,
which iterates through the rows of A in order and computes the values of x as x1 = b1

A1,1
,

x2 = b2−A2,1x1
A2,2

, and, in general, as

xi = 1
Ai,i

bi −
i−1∑
j=1

Ai,jxj

 . (2.1)

In case of an upper triangular matrix A, a backward-substitution algorithm follows symmetri-
cally in the reverse direction.

In the forward-substitution algorithm (2.1), we say that the computation of xi depends on the
value of xj , for j < i, if and only if there is an increasing sequence j = ℓ0 < ℓ1 < · · · < ℓm = i
such that each entry Aℓk−1,ℓk

is non-zero, for k = 1, . . . , m. If there is no dependency between
xi and xj , the two corresponding operations can be executed in any order, in particular also
in parallel. As such, the operations in the algorithm can naturally be represented as a DAG
G = (V, E), where V = {1, ..., n}, the vertex i represents the i-th row of A, and, for any
i, j ∈ V , we have a directed edge (j, i) ∈ E if and only if Ai,j ≠ 0. See Figure 1.1 for an
example. To indicate the compute cost of each operation, the weight ω(v) of each vertex v ∈ V
in the DAG is simply defined as the number of non-zero entries in the corresponding row of
the matrix.

The parallel execution of this DAG then directly corresponds to a parallel execution of the
SpTRSV. Many previous works found it more convenient to discuss their scheduling methods
for this problem using this DAG representation.

The parallel-scheduling problem above can be most fittingly captured in a bulk-synchronous
parallel (BSP) model [Val90a] that assumes global synchronization barriers to split the execution
into so-called supersteps. This model is also known as the XPRAM model [Val90b]. A schedule

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 6

in this model assigns each vertex, i.e., the computation of each xi, to one of the k available
cores and to a given superstep. A valid schedule must fulfill the precedence constraints of the
DAG and ensure that we always have a synchronization barrier between computing a value on
one core and using it as input on another core.

Definition 2.1. A parallel schedule of G consist of assignments π : V → {1, ..., k} to cores
and σ : V → Z>0 to supersteps, which fulfill the following properties for each (u, v) ∈ E:

• σ(u) ⩽ σ(v);
• if π(u) ̸= π(v), then σ(u) < σ(v).

The total cost of a schedule is determined by the workload balance within each superstep and
the number of synchronization barriers. The original BSP model includes also communication
volume in its cost function. For the SpTRSV application, however, the communication
happens in parallel to the computation and resolving the synchronizations. Hence, the latter
two dominate the overall execution time. Synchronous methods from previous works apply
the same scheduling model, although often without explicitly referring to BSP, XPRAM, or
supersteps.

3. The GrowLocal scheduler

Our GrowLocal algorithm is tailored specifically to the DAG scheduling problem with
synchronization barriers. The algorithm forms the supersteps one by one, always aiming to
make the current superstep as large as possible while maintaining a good workload balance.
The current superstep is formed through several iterations with a superstep length parameter
α. The algorithm attempts to form a new superstep with approximately α vertices assigned to
each core, and gradually increases α as long as this allows sufficient parallelization.

Specifically, in a single iteration with parameter α, the algorithm first assigns (up to) α
vertices to the first core, and considers the sum Ω1 of the weights of these vertices. It then
assigns vertices up to total weight of at most Ω1 to the second core, third core, and so forth. Let
Ωp denote the total weight allocated to core p in this iteration. We associate a parallelization
score of

β =
∑

p Ωp

maxp Ωp + L
(3.1)

to the current iteration. Here, L is a parameter reflecting the penalty (time cost) incurred by
each new synchronization barrier1. In order to consider the superstep allocation of the current
iteration worthy, the algorithm requires that its score β is relatively large, i.e., close to the
parallelization score achieved in the previous iterations.

In order to form a superstep, the algorithm begins with a minimal length α = 20 iteration.
This first iteration is always considered worthy, regardless of its parallelization score. Then, in
each subsequent iteration, we consider a different choice for the next superstep: the assignments
of the previous iteration are invalidated, the parameter α is increased by a factor of 1.5, and a
new potential superstep is formed, with more vertices assigned to each core. If the resulting
parallelization score is still high enough, then the superstep allocation of this iteration is also
considered worthy, and the process continues. Otherwise, the last worthy superstep allocation
is finalized as the current superstep. The high-level pseudocode of the algorithm is outlined in
Algorithm 3.1.

Naturally, when assigning vertices to a specific core p in a superstep, there may be numerous
ready-to-compute vertices that we can choose from, and selecting among these is a key aspect
to any scheduler. Similarly to the heuristic of [PAKY24], our algorithm first prioritizes those
vertices that are only computable on p in this superstep, since some of their parents were
assigned to p in the current superstep. In lack of such vertices, GrowLocal simply selects the
vertices with smallest IDs.

1The value of L may be architecture dependent. In this study, we set L = 500 based on synchronization
cycles and a small empirical evaluation.

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 7

Algorithm 3.1: Skeleton of GrowLocal scheduler
Data: A vertex-weighted DAG G = (V, E, ω) and a set of cores P = {1, 2, . . . , k}.
Result: A schedule consisting of processor assignment π : V → P and superstep

assignment σ : V → Z>0.
Rule I: Vertices are prioritized according to

(i) core exclusivity, and then
(ii) smallest ID.

1 while not all vertices are assigned yet do
2 α← 20
3 while true do

// I. Assign new vertices to each core
4 assign up to α vertices to core 1 with Rule I
5 Ω1 ← total newly assigned weight to core 1
6 for core p = 2, . . . , k in order do
7 Ωp ← 0
8 while Ωp ̸≈ Ω1 and can assign to core p do
9 assign vertex v to core p with Rule I

10 Ωp ← Ωp + ω(v)

// II. Check for sufficient parallelism

11 β ←
∑

p
Ωp

maxp Ωp+L

12 if the parallelization score β is high enough then
13 consider current assignment as worthy
14 undo new assignments up to the last barrier
15 α← 1.5× α

16 else
17 finalize last worthy assignment as next superstep
18 break inner loop

We note that while this ID-based selection may seem simple at first, it in fact plays a
crucial role in the success of our algorithm. Previous scheduling heuristics usually assign
vertices to the different cores simultaneously in order to ensure work balance. In contrast
to this, GrowLocal first assigns vertices to the first core, then to the second core, and so
forth. With the ID-based selection, this often leads to schedules where the vertices on a core
are more-or-less consecutive blocks in the matrix, which drastically improves locality during
the computation. This is especially important in matrices from applications, which are often
already ordered superbly with respect to locality, and thus preserving this is crucial. As such,
GrowLocal can also be loosely understood as a method combining the strengths of previous
DAG schedulers with barrier synchronization: similarly to [PAKY24], it allows a priority-based
choice between vertices when forming a superstep, but as in [ZCL+22], it preserves locality by
aiming to assign consecutive vertices to the same core.

Under reasonably mild assumptions, one can also show that the running time of the algorithm
is almost linear.

Theorem 3.1. Assume that both the out-degrees and compute weights of the DAG are on
the same order of magnitude. Then, the time complexity of the GrowLocal algorithm is
O(|E| · log |V |).

The precise formulation of the theorem and the proof are deferred to Section B of the
supplementary material. On a high level, since the size of the iterations follows a geometric

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 8

series, one can show the total number of speculative vertex assignments in a superstep is still
only a linear factor more than the size of the finalized superstep. However, a rigorous proof of
the theorem is much more technical due to the fact that our parallelization score also depends
on the weights of the vertices and the parameter L. In the supplementary material, we also
provide a brief experimental analysis, which confirms linear complexity.

One can also easily observe that the space requirement of the algorithm is simply O(|E|).

3.1. Block parallel scheduling. In order to reduce the overhead from scheduling even
further, one can parallelize the scheduling process. Instead of directly parallelizing the algorithm,
we split the scheduling problem into independent parts. We achieve this by subdividing the
lower triangular matrix into smaller lower triangular matrix blocks along the diagonal as in
Figure 3.1.

(a) Decomposition of 9× 9
matrix

D
A

G
1

D
A

G
2

D
A

G
3

(b) Sub-DAGs

Figure 3.1. Subdivision of a 9× 9 lower triangular matrix into three 3× 3
lower triangular matrix blocks (a) and the three corresponding sub-DAGs with
inter-DAG dependency (b).

On each of these sub-problems, we can generate schedules in parallel. When combining
these schedules, we just have to ensure that the individual schedules are combined one after
the other. Equivalently, we can add to the superstep assignment of each vertex in each block
the total number of supersteps in earlier block schedules.

We remark that for the weight of the vertices (in the DAG representation), we still use the
number of non-zeros in the full matrix. This is in line with our SpTRSV kernel implementation.

4. Acyclicity-preserving graph coarsening

Previous works discuss several ways to partition a DAG into clusters such that this coarsened
graph remains acyclic, although often without a formal proof of this property. In a further
generalization of earlier methods from Cong et al. [CLB94, §4] and Zarebavani et al. [ZCL+22,
§IV.B], we now introduce the concept of cascades and prove that coarsening a DAG along
such cascades is still guaranteed to preserve acyclicity. This is presented in Section 4.1. In
Section 4.2, we describe the graph coarsening algorithm used in our scheduling algorithms.

4.1. Cascades. We begin with some formal definitions. Thereafter, we prove Proposition 4.3,
demonstrating the utility of cascades for coarsening DAGs.

Definition 4.1. Let G = (V, E) be a directed graph and P a partition of V . We define the
coarsened graph of G along P as the graph (V ′, E′), where V ′ = P , i.e., the vertices are the
parts of the partition P , and for U ′, W ′ ∈ V ′ we have that (U ′, W ′) ∈ E′ if and only if U ′ ̸= W ′

and ∃(u, w) ∈ E such that u ∈ U ′ and w ∈W ′. We denote the coarsened graph of G along P
by G//P .

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 9

In other words, the coarsened graph G//P is the graph G quotiented by the equivalence
relation induced by P with self-loops removed. The definition is easily extended to vertex-
weighted graphs, where the weight of a part U ∈ P is given as the sum the weights of its
elements: ω(U) =

∑
u∈U ω(u).

Definition 4.2. Let G = (V, E) be a directed graph. We call a subset of vertices U ⊆ V a
cascade if and only if for every vertex v ∈ U with an incoming cut edge, that is (w, v) ∈ E
such that w ̸∈ U , and for every vertex u ∈ U with an outgoing cut edge, that is (u, w) ∈ E
such that w ̸∈ U , there is a (possibly trivial) directed walk from v to u in G.

Proposition 4.3. Let G = (V, E) be a directed acyclic graph and P a partition of V such that
each set U ∈ P is a cascade. Then, the coarsened graph G//P of G along P is acyclic.

Proof. We will show that any directed walk in G//P can be elevated to a directed walk in G.
Therefore, the existence of directed cycles in G//P implies the existence of directed cycles in
G.

We lift a walk from G//P by mapping each edge to an arbitrary representative in E, whose
endpoints necessarily lie in disjoint sets of the partition P as G//P does not contain any
self-loops, and connecting the endpoints via the directed walks guaranteed by the defining
property of cascades. □

4.2. Algorithm. In our graph coarsening algorithm, we do not make use of the full strength
of Proposition 4.3. Instead, we use a subcategory of cascades, which can be found efficiently.
We call them funnels, though they have been previously described under the name fanout-free
cone [CLB94, §4]. Since the latter reference does not include an algorithm with a complexity
analysis, we include them here in Algorithm 4.1.

Definition 4.4. Let G = (V, E) be a directed acyclic graph. We call a subset of vertices
U ⊆ V an in-funnel if and only if U is a cascade and there is at most one vertex u ∈ U with
an outgoing cut edge, that is (u, w) ∈ E such that w ̸∈ U .

We analogously define an out-funnel.

The time complexity of the topological sort is O(|V |+ |E|) [Kah62] and its space complexity
is O(|V |). In order to bound the time complexity for the remaining part, we note that each
parent vertex v in Line 11 is visited at most as many times as its out-degree, leading to an
overall complexity of O(|V |+ |E|). The space complexity is easily seen to be O(|V |).

In practice, before applying this graph coarsening, we remove some transitive edges from G
as this increases the likelihood of finding larger components. A complete transitive reduction
is slow, though there are faster approximate transitive reductions, such as the ‘remove all long
edges in triangles’-algorithm [PSSD14, §2.3] with a time complexity of O(

∑
v∈V deg(v)2). This

algorithm may be terminated early if a faster runtime is desired. In our implementation, we
run the full (approximate) algorithm.

In our implementation, we also add a size/weight constraint on each component of the
partition to Algorithm 4.1 as otherwise a graph with only one sink vertex would be coarsened
into a graph with only one vertex. Altogether, our coarsening algorithm Funnel is a more
general2 and robust version of the coarsening algorithm in HDagg [ZCL+22].

2Every in-tree is an in-funnel.

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 10

Algorithm 4.1: In-funnel graph coarsening.
Data: A directed acyclic graph G = (V, E).
Result: A partition P such that every U ∈ P is an in-funnel.

1 Partition← ∅
2 Visited[v]← false, ∀v ∈ V

3 for v ∈ V in reverse topological order do
4 if Visited[v] then continue
5 U ← ∅
6 ChildrenCount[u]← 0, ∀u ∈ V

7 PrioQueue.insert(v)
8 while not PrioQueue.empty() do
9 w ← PrioQueue.pop()

10 U.insert(w)
11 for u ∈ Parents(w) do
12 ChildrenCount[u]← ChildrenCount[u] + 1
13 if ChildrenCount[u] = OutDegree(u) then
14 PrioQueue.insert(u)

15 for u ∈ U do
16 Visited[u]← true
17 Partition.insert(U)
18 return Partition

5. Reordering for locality

Our algorithms already account for two of the most important factors in synchronous
scheduling: work balance and the number of synchronization barriers. However, another major
aspect that greatly influences the efficiency of a parallel SpTRSV execution is data locality,
i.e., the number of required values that are already available in cache.

In order to address this, we apply a separate reordering step to ensure that vertices which
are computed together are also stored together. The main idea of this approach has already
been considered before, cf. [RG92], but has not found its way into modern baselines. In
particular, we consider a reordering (relabeling) the vertices of the input DAG based on the
partitioning we developed, where we iterate through the supersteps in order, and within each
superstep, we iterate through the cores in order. That is, we first start with the vertices v
with π(v) = 1, σ(v) = 1, then the vertices v with π(v) = 2, σ(v) = 1, and so on, up to the
vertices v with π(v) = k, σ(v) = 1, followed by vertices v with π(v) = 1, σ(v) = 2, etc. Within
a given core-superstep combination, we go through the vertices in the original order (which
gives a topological ordering of the induced sub-DAG). We then symmetrically permute the
input matrix and permute the right-hand-side vector of the SpTRSV problem accordingly.
Note that since the permutation provides a valid topological ordering of the vertices of the
DAG, the resulting matrix is still lower triangular, resulting in an equivalent (symmetrically
permuted) formulation of the SpTRSV problem.

We then execute the SpTRSV computation on the permuted problem, following our schedule,
which ensures that vertices computed on the same core in the same superstep are stored close
to each other, thus greatly improving locality during the computation.

6. Experimental setup

In this section, we present the experimental setup for the evaluation of our scheduling
algorithm. Our implementations are available in the OneStopParallel repository [BLM+24] on
Github.

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 11

6.1. Methodology. For the evaluation, we used a standard SpTRSV implementation which
iterates through the rows of the matrix which was stored in compressed sparse row (CSR)
format [TW67]. The algorithm was parallelized using the OpenMP library with the flags
OMP_PROC_BIND and OMP_PLACES set to close and cores, respectively.

We measured one hundred times the time it takes for a single SpTRSV execution using
the chrono high-resolution clock. The measurements were taken whilst the system was ‘hot’,
meaning two untimed executions precede the timed executions. Between each SpTRSV
execution, the right-hand-side vector b was reset to all ones. The experiments were repeated for
each scheduling algorithm, data set, and CPU architecture type. The latter two are described
in more detail in Section 6.2 and Section 6.3, respectively. If the interquartile range of the
measurements corresponding to a scheduling method was too large, we rejected and re-ran all
experiments on the same matrix and processor configuration.

The experiments for the schedulers HDagg and SpMP were carried out in the sympiler
framework [CKSD17, Che22] as in [ZCL+22] with only minor adjustments to adhere to the
aforementioned setup. All remaining schedulers were tested in our own framework.

All scheduling algorithms are implemented in C++ and were compiled with GCC (11.4.0 or
11.5.0) using the optimization flag -O3.

6.2. Data sets. For the experiments, we used matrices from several data sets. The main data
set is a sample from the SuiteSparse Matrix Collection [DH11], which constitutes a diverse
set of matrices from a wide range of applications and was used in previous studies [ZCL+22].
We also consider two modified versions of this data set that are also relevant in their own
right. Finally, these data sets are complemented with two randomly generated ones: uniformly
random, i.e., Erdős–Rényi matrices [ER59], and random with a bias towards the diagonal. The
former are easier to parallelize as they have few (and thus large) wavefronts [HKSL14] and the
latter are specifically designed to be harder to parallelize, though they admit good locality.

A useful general metric to understand the parallelizability of an SpTRSV execution is the
average wavefront size, which can be calculated from the DAG representation by dividing the
number of vertices by the length of the longest path. This metric is indicated for each matrix
in the overview of the data sets in the supplement, see Section A.

6.2.1. SuiteSparse. From the SuiteSparse Matrix Collection [DH11], we used the lower trian-
gular part of all the sparse real symmetric positive definite matrices. Out of those, we further
restricted ourselves to large matrices with enough available parallelism, meaning

• the number of floating point operations3 is at least 2 million, and
• the average wavefront size is at least 44, twice the number of cores utilized in the

experiments.
We furthermore removed matrices from the data set which had the same sparsity pattern.

An overview over some statistics of the matrices may be found in Table A.1 of the supplement.

6.2.2. SuiteSparse METIS (METIS). Zarebavani et al. [ZCL+22] also use the real symmetric
positive definite matrices from the SuiteSparse Matrix Collection as their data set. However,
they use a modified version of this data set, which we also reproduce here. In their experiments,
the matrices are first symmetrically permuted using a fill-reducing method of METIS [KK98]
and only then the lower triangular part is taken. In general, this results in non-equivalent
SpTRSV problems. The sparsity pattern of the matrices in this data set are representative
of SpTRSV workloads in a Gauß–Seidel or a zero-fill-in incomplete Cholesky preconditioned
conjugate gradient method for sparse symmetric solve. An overview over some statistics of the
matrices may be found in Table A.2 of the supplement.

3The number of floating point operations is equal to twice the number of non-zeros minus the dimension of
the matrix.

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 12

6.2.3. SuiteSparse Eigen incomplete Cholesky (iChol). This data set consists of lower triangu-
lar matrices obtained after an incomplete Cholesky decomposition. The initial set of matrices
are the same symmetric matrices used in the SuiteSparse data set4. The incomplete Cholesky
decomposition was performed using the ‘IncompleteCholesky’ method of Eigen [GJ+10] using
the built-in fill-reducing method ‘AMDOrdering’. An overview over some statistics of the
matrices may be found in Table A.3 of the supplement.

6.2.4. Erdős–Rényi. These are lower triangular matrices where each entry (i, j), with i > j,
is independently non-zero with a fixed probability p. The values of the non-zero non-diagonal
entries we have chosen to be independently uniformly distributed in [−2, 2]. The absolute
value of the diagonal entries we have chosen to be independently log-uniformly distributed in
[2−1, 2] and their sign to be ± independently uniformly random5. The DAGs corresponding to
these matrices are directed Erdős–Rényi random graphs [ER59].

We generated thirty N ×N matrices of this type with N = 100,000 and p = 10−4, 5 ·10−4, 2 ·
10−3, ten of each given probability. An overview over some statistics of the matrices may be
found in Table A.4 of the supplement.

6.2.5. Narrow bandwidth. We also create a data set of random matrices which are much harder
to parallelize by design, but have good locality. Unlike the Erdős–Rényi random matrices,
we let the lower triangular matrix entry (i, j), with i > j, be independently non-zero with
probability p · exp((1 + j − i)/B), moving the non-zero entries closer to the diagonal. The
entry values were chosen as in Section 6.2.4.

We generated thirty N ×N matrices of this type with N = 100,000 and (p, B) = (0.14, 10),
(0.05, 20), (0.03, 42), ten for each pair (p, B). An overview over some statistics of the matrices
may be found in Table A.5 of the supplement.

6.3. CPU architectures. The CPU architectures used for the experiments were x86 and
ARM. The precise model and some specifications are given, respectively, as follows:

• Intel Xeon Gold 6238T processor (x86), with 192 GB memory and theoretical peak
memory throughput of 140.8 GB/s and 22 cores on a single socket; kernel version
5.14.0; GCC version 11.5.0;
• AMD EPYC 7763 processor (x86), with 1024 GB memory and theoretical peak

memory throughput of 204.8 GB/s and 64 cores on a single socket; kernel version
5.15.0; GCC version 11.4.0;
• Huawei Kunpeng 920-4826 (Hi1620) processor (ARM), with 512 GB memory and

theoretical peak memory throughput of 187.7 GB/s and 48 cores on a single socket;
kernel version 5.15.0; GCC version 11.4.0.

7. Evaluation

7.1. Overall performance. We present speed-ups of the forward-/backward-substitution
algorithm based on parallel schedules compared to serial execution. The schedules of our
proposed algorithm are benchmarked against those produced by the baseline methods, SpMP
[PSSD14] and HDagg [ZCL+22]. The results, aggregated over the instances from the respective
data set using the geometric mean of all pairs of runs, are displayed in Table 7.1. All
experiments were conducted on the Intel x86 machine utilizing 22 cores.

On our main data set, SuiteSparse, the schedules generated by our GrowLocal algorithm
achieves a geometric-mean speed-up of 1.42× compared to SpMP and 3.32× compared to
HDagg. We also see similar results on the two variations of the SparseSuite data set: on
METIS, GrowLocal obtains a 1.70× and 1.77× geometric-mean speed-up to SpMP and
HDagg, respectively, and on iChol, it achieves a 1.80× and 2.20× speed-up to SpMP and
HDagg, respectively. This shows that GrowLocal indeed significantly outperforms the baseline
algorithms on these application-based data sets.

4The matrix ‘bundle_adj’ segmentation-faults during the process and is thus excluded from the data set.
5The change of distribution on the diagonal is to avoid numerical instability, in particular divisions by zero.

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 13

The differences are even larger on the Narrow Bandwidth matrices: here GrowLocal achieves
a 2.50× and 10.12× factor improvement compared to SpMP and HDagg, respectively. This
indicates that in the more challenging cases when our DAGs are particularly hard to parallelize,
GrowLocal is even more superior to the baselines.

Finally, on the Erdős–Rényi data set, the improvement is much smaller; since these DAGs
are easier to parallelize, the differences between the algorithms become less relevant.

We also note that Funnel coarsening does not seem to further improve GrowLocal; we
elaborate on this later in Section 7.3.

Data set GrowLocal Funnel+GL SpMP HDagg

SuiteSparse 10.79 10.19 7.60 3.25
METIS 15.93 15.40 9.35 9.00
iChol 15.10 14.84 8.36 6.87
Erdős–Rényi 12.75 12.66 9.38 8.44
Narr. bandw. 9.04 8.26 3.56 0.88

Table 7.1. Geometric mean of speed-ups over serial execution of GrowLocal
with/without Funnel coarsening, compared to the baselines SpMP and HDagg
on the Intel x86 machine using 22 cores taken over the data sets from Section
6.2.

We also include a performance profile [DM02] based on the data generated from the
SuiteSparse data set in Figure 7.1. The closer the line is to the top left corner, the better and
more consistent the algorithm is across the data set. This shows that our algorithm is not only
faster in execution time on average but it is so throughout the diverse SuiteSparse data set.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.2

0.4

0.6

0.8

1.0

HDagg
Funnel+GL
GrowLocal
SpMP

Figure 7.1. Performance profiles of our algorithms on the SuiteSparse data
set evaluated on the Intel x86 machine using 22 cores. The x-axis represents a
threshold and the y-axis is the proportion of runs that are within this threshold
times the fastest SpTRSV run on the respective matrix.

7.2. Fewer synchronization barriers. The results in Table 7.1 show that our scheduler can
significantly outperform the synchronous state-of-the-art HDagg. A further analysis shows that
this is in part due to a substantial reduction in the number of synchronization barriers required
during execution, whilst still maintaining a good work balance. In particular, Table 7.2 shows
the number of synchronization barriers relative to the number of wavefronts in our algorithm
and HDagg. The data indicates a large, up to 14.99×, reduction of number of synchronization

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 14

barriers compared to the number of wavefronts on the SuiteSparse data set. This is a reduction
of up to 12.07× compared to HDagg, which explains the significant speed-ups achieved by
our methods. In general, we can observe a similar effect in the remaining data sets, but the
difference is much smaller for Erdős–Rényi, and much higher for narrow bandwidth matrices.

Data set GrowLocal Funnel+GL HDagg

SuiteSparse 14.99 17.09 1.24
METIS 16.55 21.83 2.39
iChol 18.91 22.86 1.62
Erdős–Rényi 2.93 2.99 1.25
Narrow bandw. 51.12 42.00 1.10

Table 7.2. Geometric mean of the reduction of the number of synchronization
barriers relative to the number of wavefronts of the matrix within each data
set from Section 6.2.

7.3. Impact of Funnel coarsening. The results in Table 7.1 show that the DAG coarsening
approach does not allow to further improve the schedules developed by GrowLocal on most
of the data sets. This is an interesting contrast to the HDagg baseline, where coarsening is
also a key ingredient of the scheduler. This suggests that GrowLocal is already rather strong
at exploring the DAG structure and exploiting locality, and hence, the advantages of the
coarsening step cannot compensate for the loss of structure in the graph.

However, besides this negative result, the Funnel coarsener also has several benefits that make
it interesting in its own right. Firstly, it allows to run GrowLocal on a much smaller DAG, and as
a results, the combined running time of Funnel+GrowLocal is often lower than GrowLocal alone;
we will quantify this later in Section 7.7. As such, Funnel+GrowLocal can be a more desirable
alternative when the scheduling time is also a critical factor. Secondly, Funnel coarsening allows
one to reduce the number of synchronization barriers even further: while GrowLocal achieves
a 12.07× geo-mean reduction compared to HDagg, Funnel+GrowLocal together achieves a
13.76× geo-mean reduction of synchronization barriers, which is of independent interest.

7.4. Impact of reordering. We separately analyze the impact of the reordering step on
the performance. Table 7.3 compares the speed-ups achieved by our algorithm with and
without the reordering component from Section 5. The numbers show that reordering is
indeed a valuable ingredient of our scheduler. The data also confirms that even without the
reordering, the algorithm still outperforms HDagg notably, which is the current state-of-the-art
synchronous baseline, cf. Table 7.1.

Data set Reordering No Reordering

SuiteSparse 10.79 8.62
METIS 15.93 15.21
iChol 15.10 15.02
Erdős–Rényi 12.75 7.87
Narrow bandw. 9.04 6.96

Table 7.3. Geometric mean of speed-ups relative to Serial of GrowLocal
with/without permuting the matrix data according to the computed schedule.
Experiments were conducted on the Intel x86 machine using 22 cores.

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 15

7.5. Performance across different architectures. We show the performance gains of our
algorithm over the different processors and architectures in Table 7.4. The data confirms that
our algorithm consistently outperforms the baselines across all considered architectures. We
note that the improvement relative to Serial can be in a significantly different range due to the
properties of the distinct architectures. SpMP is omitted for the ARM architecture because
its implementation is x86-specific.

Machine GrowLocal SpMP HDagg

Intel x86 10.79 7.60 3.25
AMD x86 5.20 3.65 1.98
Huawei ARM 9.27 n/a 2.16

Table 7.4. Geometric mean speed-ups relative to Serial of our algorithms over
different machines and processor architectures. Experiments were conducted
using 22 cores on the SuiteSparse data set.

7.6. Scaling with the number of cores. Another natural question is how our algorithm
scales with a growing number of cores. To examine this, we illustrate the speed-ups (over
serial execution) for different numbers of cores in Table 7.5. We note that this experiment was
conducted on the AMD x86 machine as it has 64 available cores on a single socket. As one

Algorithm 4 16 32 48 56 64

GrowLocal 2.63 4.15 5.34 5.70 5.76 5.85

Table 7.5. Geometric mean of speed-ups relative to Serial of GrowLocal for
different number of cores on the AMD x86 machine taken over the SuiteSparse
data set.

sees, additional cores have diminished or negative returns at the higher end of number of cores.
A reason for this is the average wavefront size which is a proxy for the amount of parallelism
available. If we split the SuiteSparse data set into groups according to their average wavefront
size, we see that these groups scale to different number of cores, see Figure 7.2. This shows
that our algorithm does scale if the matrices allow for it.

10 20 30 40 50 60

4

6

8

10

12

Sp
ee

d-
up

 o
ve

r S
er

ia
l Avg. wavefront size

44-127
128-1200
>50000

Figure 7.2. Geometric mean speed-ups of GrowLocal for different number of
cores on the AMD x86 machine taken over the SuiteSparse data set categorized
by average wavefront size.

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 16

7.7. Amortization of scheduling time. In this section, we consider the gain of the different
scheduling algorithms when the scheduling time is taken into account. We measure the
amortization threshold as the following ratio6:

scheduling_time
serial_execution_time− parallel_execution_time . (7.1)

The same metric was considered by Zarebavani et. al. [ZCL+22, §V.B] and expresses how
often the schedule needs to be reused in order to justify the time spent on computing it. Table
7.6 presents the amortization threshold for GrowLocal and the two baselines, with the 25th
percentile, median, and 75th percentile values shown for each algorithm. The results indicate
that the amortization threshold of GrowLocal (both with and without Funnel) is of a similar
magnitude to that of SpMP. HDagg has a significantly higher amortization threshold on the
SparseSuite data set. However, we remark that, e.g., on the METIS pre-processed data set we
observed a comparable median amortization threshold of 44.21 for HDagg.

Algorithm Q25 Median Q75

GrowLocal 23.78 26.12 30.28
Funnel+GL 17.78 21.74 27.78
SpMP 3.65 5.51 8.41
HDagg 311.23 961.39 1848.80

Table 7.6. Amortization threshold of several scheduling algorithms on the
SuiteSparse data set with the 25th percentile, median, and 75th percentile
values shown for each algorithm. The data was collected on the Intel x86
machine using 22 cores.

7.8. Block parallel scheduling. In order to further reduce the amortization threshold of
GrowLocal, we now consider the effect of subdividing the matrix into blocks and applying
the GrowLocal scheduler on each block in parallel, cf. Section 3.1. In Table 7.7, we record
the effect of running GrowLocal with multiple scheduling threads on scheduling time, floating
point operations per second, number of supersteps, and amortization threshold. We see that
using multiple scheduling threads can lead to super-linear speed-up of scheduling time. This is
because there are now several (long) egdes that never have to be considered, cf. Figure 3.1.
We also see that the SpTRSV solve time is more significantly affected when using a higher
number of scheduling threads. We note that these effects are heavily dependent on the matrix.
Some matrices, such as ‘af_shell7’ and ‘bmwcra_1’ have approximately a 30% performance
drop in the SpTRSV solve time already when using just two blocks, whereas ‘bundle_adj’ and
‘Hook_1498’ are hardly affected even when using 16 blocks. Despite the performance drops,
we find a near linear decrease in the amortization threshold.

Table 7.7 indicates, for instance, that using 6 scheduling threads is a noteworthy compromise.
This lowers the median amortization threshold to 4.54, which is smaller than that of SpMP, cf.
Table 7.6, whilst maintaining a 1.05× speed-up over SpMP. This makes GrowLocal superior
on both metrics simultaneously.

6If the parallel execution is slower than the serial one, then the amortization threshold is defined as +∞.

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 17

Threads Sched.
Time Flops/s Supersteps Amort.

Threshold

1 1.00 1.00 1.00 26.12
2 2.01 0.89 1.47 13.59
4 4.11 0.79 1.99 6.91
6 6.28 0.74 2.35 4.54
8 8.34 0.70 2.66 3.48
16 17.06 0.57 3.84 1.78
22 23.43 0.52 4.53 1.31

Table 7.7. Geometric means of relative speed-up of scheduling time, relative
decrease in double precision floating point operations per second, and relative
increase of number of supersteps of GrowLocal compared to using just a single
scheduling thread, that is, a single scheduling block, together with the median
amortization threshold of GrowLocal on the SuiteSparse data set. The data
was collected on the Intel x86 machine using 22 cores.

8. Conclusion and future directions

The results show that our GrowLocal scheduler indeed significantly speeds up the parallel
SpTRSV kernel, reducing the execution time by a 1.42× geometric-mean factor compared to
SpMP and 3.32× compared to HDagg on the SuiteSparse benchmark. The data also shows
that the algorithm performs similarly well on multiple other data sets, and the improvements
are consistent over various architectures. The scheduling time of GrowLocal is also competitive
with the baselines, especially when combined with the block decomposition technique.

Future work may consider the adaptation of our algorithm to non-uniform memory access
(NUMA) architectures. In particular, the AMD x86 data in Section 7.6 confirms that our
algorithm scales well to a high number of cores. However, when solving SpTRSV on highly
NUMA architectures, we expect the parallel execution to be less effective. In order to adapt
to such a NUMA setting, one should consider fundamental changes to the SpTRSV kernel and
the data structures, such as partitioning the matrix local to threads, interleaving the vector,
and reducing the need for global synchronization. It is also an interesting question whether
the scheduling algorithm can be efficiently adapted to NUMA, for example, by considering
non-uniform bandwidth or latency. To our knowledge, there are currently no scheduling
algorithms for SpTRSV that directly account for such NUMA effects.

Another promising direction for future work is to combine our barrier list scheduling
algorithms with other approaches that proved successful for SpTRSV in the past. For instance,
one could seek to adapt GrowLocal to a semi-asynchronous setting as in SpMP, in order to
allow for a more flexible parallel execution. This could allow for further speed-ups on top of
our current results.

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 18

Appendix A. Tables of matrices

Here we provide some basic statistics of the matrices used in the experiments, cf. Section 6.2.

af_0_k101 503,625 9,027,150 74
af_shell7 504,855 9,046,865 135
apache2 715,176 2,766,523 1,077
audikw_1 943,695 39,297,771 203
bmw7st_1 141,347 3,740,507 199
bmwcra_1 148,770 5,396,386 204
bone010 986,703 36,326,514 470
boneS01 127,224 3,421,188 156
boneS10 914,898 28,191,660 386
Bump_2911 2,911,419 65,320,659 283
bundle_adj 513,351 10,360,701 57,039
consph 83,334 3,046,907 139
Dubcova3 146,689 1,891,669 44
ecology2 999,999 2,997,995 500
Emilia_923 923,136 20,964,171 176
Fault_639 638,802 14,626,683 143
Flan_1565 1,564,794 59,485,419 200
G3_circuit 1,585,478 4,623,152 611
Geo_1438 1,437,960 32,297,325 246
hood 220,542 5,494,489 365
Hook_1498 1,498,023 31,207,734 95
inline_1 503,712 18,660,027 287
ldoor 952,203 23,737,339 141
msdoor 415,863 10,328,399 59
offshore 259,789 2,251,231 75
parabolic_fem 525,825 2,100,225 75,117
PFlow_742 742,793 18,940,627 118
Queen_4147 4,147,110 166,823,197 342
s3dkt3m2 90,449 1,921,955 60
Serena 1,391,349 32,961,525 298
shipsec1 140,874 3,977,139 67
StocF-1465 1,465,137 11,235,263 487
thermal2 1,228,045 4,904,179 991

Matrix Size #Non-zeros Avg. wf

Table A.1. Matrices and statistics from SuiteSparse Matrix Collection [DH11]
used for the evaluation. The average wavefront size (Avg. wf) has been rounded
down.

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 19

af_0_k101_metis 503,625 9,027,150 610
af_shell10_metis 1,508,065 27,090,195 1,065
apache2_metis 715,176 2,766,523 47,678
audikw_1_metis 943,695 39,297,771 1,734
bmwcra_1_metis 148,770 5,396,386 473
bone010_metis 986,703 36,326,514 1,326
boneS10_metis 914,898 28,191,660 2,401
bundle_adj_metis 513,351 10,360,701 11,407
cant_metis 62,451 2,034,917 333
consph_metis 83,334 3,046,907 247
crankseg_2_metis 63,838 7,106,348 86
ecology2_metis 999,999 2,997,995 62,499
Emilia_923_metis 923,136 20,964,171 2,107
Fault_639_metis 638,802 14,626,683 1,458
Flan_1565_metis 1,564,794 59,485,419 2,569
G3_circuit_metis 1,585,478 4,623,152 93,263
Geo_1438_metis 1,437,960 32,297,325 2,887
gyro_metis 17,361 519,260 88
hood_metis 220,542 5,494,489 984
Hook_1498_metis 1,498,023 31,207,734 4,059
inline_1_metis 503,712 18,660,027 1,549
ldoor_metis 952,203 23,737,339 4,858
m_t1_metis 97,578 4,925,574 268
msdoor_metis 415,863 10,328,399 1,856
nasasrb_metis 54,870 1,366,097 287
PFlow_742_metis 742,793 18,940,627 1,023
pwtk_metis 217,918 5,926,171 511
raefsky4_metis 19,779 674,195 111
ship_003_metis 121,728 4,103,881 494
shipsec8_metis 114,919 3,384,159 456
StocF-1465_metis 1,465,137 11,235,263 11,446
thermal2_metis 1,228,045 4,904,179 45,483
tmt_sym_metis 726,713 2,903,837 26,915
x104_metis 108,384 5,138,004 306

Matrix Size #Non-zeros Avg. wf

Table A.2. Matrices and statistics from SuiteSparse Matrix Collection [DH11]
symmetrically permuted using the fill-reducing method ‘METIS_NodeND’ of
[KK98]. The average wavefront size (Avg. wf) has been rounded down.

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 20

af_0_k101_iCh 503,625 9,027,150 195
af_shell7_iCh 504,855 9,046,865 668
apache2_iCh 715,176 2,766,523 79,464
audikw_1_iCh 943,695 39,297,771 138
bmw7st_1_iCh 141,347 3,740,507 340
bmwcra_1_iCh 148,770 5,396,386 89
bone010_iCh 986,703 36,326,514 340
boneS01_iCh 127,224 3,421,188 245
boneS10_iCh 914,898 28,191,660 521
Bump_2911_iCh 2,911,419 65,320,659 1,048
consph_iCh 83,334 3,046,907 78
Dubcova3_iCh 146,689 1,891,669 1,594
ecology2_iCh 999,999 2,997,995 142,857
Emilia_923_iCh 923,136 20,964,171 511
Fault_639_iCh 638,802 14,626,683 422
Flan_1565_iCh 1,564,794 59,485,419 689
G3_circuit_iCh 1,585,478 4,623,152 88,082
Geo_1438_iCh 1,437,960 32,297,325 768
hood_iCh 220,542 5,494,489 1,050
Hook_1498_iCh 1,498,023 31,207,734 649
inline_1_iCh 503,712 18,660,027 679
ldoor_iCh 952,203 23,737,339 3,317
msdoor_iCh 415,863 10,328,399 956
offshore_iCh 259,789 2,251,231 1,114
parabolic_fem_iCh 525,825 2,100,225 19,475
PFlow_742_iCh 742,793 18,940,627 240
Queen_4147_iCh 4,147,110 166,823,197 719
s3dkt3m2_iCh 90,449 1,921,955 104
Serena_iCh 1,391,349 32,961,525 940
shipsec1_iCh 140,874 3,977,139 259
StocF-1465_iCh 1,465,137 11,235,263 2,990
thermal2_iCh 1,228,045 4,904,179 47,232

Matrix Size #Non-zeros Avg. wf

Table A.3. Matrices and statistics from SuiteSparse Matrix Collection [DH11]
post Eigen incomplete Cholesky [GJ+10] used for the evaluation. The average
wavefront size (Avg. wf) has been rounded down.

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 21

ER_100k_19m_A 100,000 19,999,021 109
ER_100k_19m_B 100,000 19,998,182 109
ER_100k_19m_C 100,000 19,997,897 107
ER_100k_19m_D 100,000 19,995,405 106
ER_100k_19m_E 100,000 19,994,516 107
ER_100k_19m_G 100,000 19,989,535 106
ER_100k_19m_H 100,000 19,999,989 110
ER_100k_1m_A 100,000 1,001,528 1,785
ER_100k_1m_B 100,000 1,000,452 1,818
ER_100k_1m_C 100,000 1,000,315 1,818
ER_100k_1m_E 100,000 1,000,044 1,666
ER_100k_1m_F 100,000 1,000,406 1,785
ER_100k_1m_G 100,000 1,001,171 1,724
ER_100k_1m_H 100,000 1,001,551 1,886
ER_100k_1m_I 100,000 1,000,237 1,639
ER_100k_1m_J 100,000 1,001,533 1,851
ER_100k_20m_F 100,000 20,001,732 107
ER_100k_20m_I 100,000 20,006,442 109
ER_100k_20m_J 100,000 20,003,479 109
ER_100k_4m_A 100,000 4,998,205 395
ER_100k_4m_C 100,000 4,999,271 398
ER_100k_4m_G 100,000 4,999,358 401
ER_100k_4m_J 100,000 4,996,501 414
ER_100k_5m_B 100,000 5,006,107 411
ER_100k_5m_D 100,000 5,001,575 404
ER_100k_5m_E 100,000 5,004,251 400
ER_100k_5m_F 100,000 5,002,190 400
ER_100k_5m_H 100,000 5,000,573 409
ER_100k_5m_I 100,000 5,001,846 400
ER_100k_999k_D 100,000 999,915 1,818

Matrix Size #Non-zeroes Avg. wf

Table A.4. Matrices and statistics in the Erdős–Rényi data set used for the
evaluation. The average wavefront size (Avg. wf) has been rounded down.

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 22

NB_p14_b10_100k_A 100,000 146,565 87
NB_p14_b10_100k_B 100,000 146,328 115
NB_p14_b10_100k_C 100,000 147,201 61
NB_p14_b10_100k_D 100,000 146,972 73
NB_p14_b10_100k_E 100,000 147,369 73
NB_p14_b10_100k_F 100,000 146,855 111
NB_p14_b10_100k_G 100,000 147,350 132
NB_p14_b10_100k_H 100,000 147,412 85
NB_p14_b10_100k_I 100,000 147,132 132
NB_p14_b10_100k_J 100,000 146,781 105
NB_p3_b42_100k_A 100,000 127,045 46
NB_p3_b42_100k_B 100,000 127,019 55
NB_p3_b42_100k_C 100,000 127,708 29
NB_p3_b42_100k_D 100,000 127,341 45
NB_p3_b42_100k_E 100,000 127,569 67
NB_p3_b42_100k_F 100,000 127,137 47
NB_p3_b42_100k_G 100,000 127,774 52
NB_p3_b42_100k_H 100,000 127,029 46
NB_p3_b42_100k_I 100,000 127,475 39
NB_p3_b42_100k_J 100,000 127,275 62
NB_p5_b20_100k_A 100,000 102,053 1,298
NB_p5_b20_100k_B 100,000 102,621 1,063
NB_p5_b20_100k_C 100,000 102,021 1,298
NB_p5_b20_100k_D 100,000 102,968 1,075
NB_p5_b20_100k_E 100,000 102,650 952
NB_p5_b20_100k_F 100,000 102,309 1,162
NB_p5_b20_100k_G 100,000 103,152 892
NB_p5_b20_100k_H 100,000 102,324 1,190
NB_p5_b20_100k_I 100,000 102,465 1,369
NB_p5_b20_100k_J 100,000 102,244 1,010

Matrix Size #Non-zeroes Avg. wf

Table A.5. Matrices and statistics in the narrow bandwidth data set used for
the evaluation. The average wavefront size (Avg. wf) has been rounded down.

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 23

Appendix B. Time and space complexity of GrowLocal

Below we provide a more detailed discussion of the time and space complexity of GrowLocal.
We first restate Theorem 3.1 more formally, including the assumption that the out-degrees
and compute weights are within a constant factor.

Theorem 3.1 (formal). Assume that there exist positive constants η and ϱ such that for all
vertices u, v ∈ V , we have

ω(u) ≤ η · ω(v), (B.1)
deg+(u) ≤ ϱ · |E|/|V |. (B.2)

Then, the time complexity of GrowLocal is O(|E| · log |V |) and the space complexity is O(|E|).

Proof. For each iteration i, denote by V(i)
p the vertices which have been assigned to core p in

iteration i, by Γ(i)
p = |V(i)

p | the number of vertices assigned to core p in iteration i, and by Ω(i)
p

the sum of weights of these vertices. From the algorithm design, specifically Line 8, we have
for each iteration i and each core p that

Ω(i)
p ≤ µΩ(i)

1 , (B.3)
for some fixed positive constant µ. We furthermore use the notations

Γ(i)
max = max

p
Γ(i)

p , (B.4)

Γ(i)
Σ =

∑
p

Γ(i)
p , and (B.5)

ωmin = min
v∈V

ω(v) (B.6)

for simplicity.
The key observation of the analysis is that during the formation of a superstep, the total

number of vertices assigned over all the iterations is only a linear factor away from the number
of vertices assigned in the final superstep. If we restrict ourselves to the first core, this is easy
to see intuitively: the first iteration assigns 20 vertices to core, the next iteration assigns 20 · 3

2 ,
the following assigns 20 · (3

2)2, and so on. If the iteration that is accepted in the end assigns α∗

vertices to the first core, then the preceding iterations assign at most α∗ ∑∞
i=1(2

3)i altogether,
and the last examined iteration (which is rejected) possibly also assigns 3

2α∗; this is altogether
still in O(α∗). Note that the ratio between the last two iterations can also be less than 3

2 , but
this does not affect the claim.

Extending the argument above to all the cores is slightly more technical due to the different
vertex weights. For a core p, we have

Γ(i)
p =

∑
v∈V(i)

p

1 ≤
∑

v∈V(i)
p

η
ω(v)∑

u∈V(i)
1

ω(u)/
∑

u∈V(i)
1

1

= η
Ω(i)

p

Ω(i)
1

∑
u∈V(i)

1

1 ≤ ηµ
∑

u∈V(i)
1

1 = ηµΓ(i)
1 . (B.7)

Here, we used (B.1) and (B.3). Thus, if α(i) = 20 · (3
2)i−1 is the parameter used for iteration i,

then we have
α(i) ≤ Γ(i)

max ≤ ηµ · α(i). (B.8)
This means that for iterations i and j with i < j, we get that the ratio Γ(i)

max/Γ(j)
max is at most

ηµ · (2
3)j−i.

For the proof below, we actually require a similar upper bound on the ratio

Γ(i)
max + L

Γ(j)
max + L

(B.9)

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 24

instead. For this, we separate two cases, namely the first few iterations and all the remaining
ones. Recall that L was chosen as a constant. Assume first that we have Γ(i)

max ⩾ L. In this
case, we can upper bound the expression above by

2 · Γ(i)
max

Γ(j)
max

⩽ 2ηµ ·
(

2
3

)j−i
. (B.10)

On the other hand, assume that Γ(i)
max < L. In this case, we can upper bound (B.9) simply

by 1. The key observation is that the number of these iterations with Γ(i)
max < L is at

most a constant in any superstep. Indeed, starting with α = 20 and multiplying by 3
2 each

round, we already have α > L by the ⌈log(L)/ log(1.5)⌉-th iteration, and hence Γ(i)
max ⩾ L for

i ≥ CL := ⌈log(L)/ log(1.5)⌉. As such, there are only CL = O(log(L)) = O(1) distinct values
where we will use this upper bound of 1.

Our algorithm only accepts and saves an iteration if its parallelization rate β is at least a
0.97 factor of the best parallelization rate observed so far during this superstep. Hence, if
iteration j is accepted and i is any iteration such that i < j, then we have∑

p Ω(j)
p

maxp Ω(j)
p + L

⩾ 0.97 ·
∑

p Ω(i)
p

maxp Ω(i)
p + L

. (B.11)

Due to our assumption on the vertex weights, we have for any iteration i that

ωmin · Γ(i)
max ⩽ max

p
Ω(j)

p ⩽ ηωmin · Γ(i)
max (B.12)

as well as
ωmin · Γ(i)

Σ ⩽
∑

p

Ω(i)
p ⩽ ηωmin · Γ(i)

Σ . (B.13)

Using these in Inequality (B.11), we get that

ηωmin · Γ(j)
Σ

ωmin · Γ(j)
max + L

⩾ 0.97 · ωmin · Γ(i)
Σ

ηωmin · Γ(i)
max + L

, (B.14)

which further implies

Γ(i)
Σ ⩽

η2

0.97 ·
Γ(i)

max + L

Γ(j)
max + L

· Γ(j)
Σ . (B.15)

Using our upper bounds on (B.9) and η = O(1), this implies

Γ(i)
Σ ⩽ O(1) · Γ(j)

Σ (B.16)

for i ∈ {1, ..., CL − 1}, and

Γ(i)
Σ ⩽ O(1) ·

(
2
3

)j−i
· Γ(j)

Σ (B.17)

for i ⩾ CL. Assuming that iteration j is the final worthy iteration that is accepted for
our superstep, this means that the total number of assigned vertices made in iterations
i ∈ {1, 2, ..., j − 1} is at most

j−1∑
i=1

Γ(i)
Σ ⩽ O(1) · Γ(j)

Σ ·

O(1) +
j−1∑
ℓ=1

(
2
3

)ℓ

 . (B.18)

With the geometric sum upper bounded by 2, we get that the number of assigned vertices is
indeed in O(Γ(j)

Σ).
Note that the argument above does not consider the possible last iteration (j + 1) which is

rejected by our algorithm. Nevertheless, we can bound the assignments here with a similar

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 25

argument. If the iteration was rejected, then its parallelization score is at most as high as that
of iteration j, i.e., β(j+1) ⩽ β(j). As before, this implies

ωmin · Γ(j+1)
Σ

ωmin · η · Γ(j+1)
max + L

⩽
ωmin · η · Γ(j)

Σ

ωmin · Γ(j)
max + L

, (B.19)

and hence

Γ(j+1)
Σ ⩽ O(1) · Γ(j+1)

max + L

Γ(j)
max + L

· Γ(j)
Σ . (B.20)

As
Γ(j+1)

max + L

Γ(j)
max + L

= Γ(j+1)
max − Γ(j)

max

Γ(j)
max + L

+ 1

⩽
Γ(j+1)

max

Γ(j)
max

+ 1 ⩽ 3
2ηµ + 1 ,

(B.21)

we have that Γ(j+1)
Σ is again in O(Γ(j)

Σ).
As such, the number of assignments in any superstep is linear in the size of the vertices

that are finally scheduled. Summing this up over all the supersteps, we get that the algorithm
altogether only makes O(|V |) assignments over all supersteps and iterations.

For each assignment, the chosen vertex is selected from a priority queue data structure.
Each such data structure contains at most |V | vertices, so the cost of each assignment is
O(log |V |). However, after each assignment of a concrete vertex v, we also need to examine all
the children u of v, check if u also becomes ready with this assignment (i.e., all parents of u
are computed now), and if so, then also insert u into such a priority queue at a time cost of
O(log |V |). Since any vertex v has at most ϱ · |E|/|V | children and ϱ ∈ O(1), this sums up to
a total of O(|V | · |E|/|V | · log |V |) over all the O(|V |) assignments. This results in an overall
time complexity of O(|E| · log |V |) for the algorithm.

The space complexity of the algorithm is much easier to settle: each iteration only stores
O(|V |) data, and we store at most two iterations at a time, so the main bottleneck here is
simply storing the input DAG itself, which requires O(|E|) space. □

For the sake of completeness, we complement the theoretical bound in Theorem 3.1 with
empirical data in Figure B.1.

107 108

Number of non-zeros

102

103

104

Sc
he

du
le

 c
om

pu
te

 ti
m

e
[m

s]

Algorithm
Funnel+GL
GrowLocal

Figure B.1. Scheduling time of Funnel+GL and GrowLocal on the SuiteSparse
data set. The straight lines are the best square-mean-error fit of the family of
curves log(y) = log(x) + c, where c is a free parameter.

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 26

Appendix C. Further discussion

C.1. Comparison to barrier list schedulers. Recall that one of the recent works on DAG
scheduling with synchronization barriers is that of Papp et al. [PAKY24], which analyzes
schedulers not for a concrete application, more abstractly in terms of BSP cost. While the
so-called BSPg scheduling heuristic in this work is rather different from our algorithm, the
idea of prioritizing vertices in GrowLocal that are computable exclusively on a specific core
was inspired by this algorithm. To show for completeness that our scheduler also significantly
outperforms this BSPg algorithm, we also ran this BSPg scheduling algorithm as a baseline.
The results show that GrowLocal achieves a factor 8.31× geometric-mean speed-up to BSPg
on the SutieSparse data set.

C.2. On the synchronisation parameter L. Recall that the parameter L in GrowLocal,
Algorithm 3.1, represents the time cost of inserting a synchronization barrier, and is used to
determine the parallelization rate in our GrowLocal algorithm.

If we consider the compute time of basic operations (additions or multiplications) with
double precision numbers, and compare this to the time of synchronization, we get that the
correct magnitude of L ranges from a few hundreds to a few thousands on modern computing
architectures. We ran some preliminary experiments with a few different choices of L on this
order of magnitude, and chose a value of L = 500 based on these empirical observations.

References
[ACD74] Thomas L. Adam, K. Mani Chandy, and J. R. Dickson. A comparison of list schedules for parallel

processing systems. Communications of the ACM, 17(12):685–690, 1974.
[AS89] Edward Anderson and Youcef Saad. Solving sparse triangular linear systems on parallel computers.

International Journal of High Speed Computing, 1(01):73–95, 1989.
[AS93] Fernando L. Alvarado and Robert Schreiber. Optimal parallel solution of sparse triangular systems.

SIAM Journal on Scientific Computing, 14(2):446–460, 1993.
[AYU21] Najeeb Ahmad, Buse Yilmaz, and Didem Unat. A split execution model for sptrsv. IEEE Transactions

on Parallel and Distributed Systems, 32(11):2809–2822, 2021.
[BLM+24] Toni Böhnlein, Benjamin Lozes, Christos Matzoros, Pál András Papp, and Raphael S. Steiner.

OneStopParallel. https://github.com/Algebraic-Programming/OneStopParallel, 2024.
[Che22] Kazem Cheshmi. Transforming Sparse Matrix Computations. PhD thesis, University of Toronto,

Computer Science, 2022.
[CKSD17] Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri Dehnavi. Sympiler:

Transforming sparse matrix codes by decoupling symbolic analysis. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’17, pages
13:1–13:13, New York, NY, USA, 2017. ACM.

[CKSD18] Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri Dehnavi. ParSy: inspection
and transformation of sparse matrix computations for parallelism. In SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 779–793. IEEE, 2018.

[CLB94] Jason Cong, Zheng Li, and Rajive Bagrodia. Acyclic multi-way partitioning of boolean networks. In
Proceedings of the 31st annual design automation conference, pages 670–675, 1994.

[DH11] Timothy A. Davis and Yifan Hu. The University of Florida sparse matrix collection. ACM Transac-
tions on Mathematical Software (TOMS), 38(1):1–25, 2011.

[DM02] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
profiles. Mathematical programming, 91:201–213, 2002.

[ER59] Paul Erdős and Alfréd Rényi. On random graphs I. Publicationes Mathematicae, 6:290–297, 1959.
[FER+13] Naznin Fauzia, Venmugil Elango, Mahesh Ravishankar, Jagannathan Ramanujam, Fabrice Rastello,

Atanas Rountev, Louis-Noël Pouchet, and Ponnuswamy Sadayappan. Beyond reuse distance analysis:
Dynamic analysis for characterization of data locality potential. ACM Transactions on Architecture
and Code Optimization (TACO), 10(4):1–29, 2013.

[GJ+10] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.
[Gra69] Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM journal on Applied Mathe-

matics, 17(2):416–429, 1969.
[HCAL89] Jing-Jang Hwang, Yuan-Chieh Chow, Frank D. Anger, and Chung-Yee Lee. Scheduling precedence

graphs in systems with interprocessor communication times. siam journal on computing, 18(2):244–
257, 1989.

https://github.com/Algebraic-Programming/OneStopParallel
http://eigen.tuxfamily.org

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 27

[HKSL14] William Hasenplaugh, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. Ordering heuristics for
parallel graph coloring. In Proceedings of the 26th ACM symposium on Parallelism in algorithms
and architectures, pages 166–177, 2014.

[HKU+17] Julien Herrmann, Jonathan Kho, Bora Uçar, Kamer Kaya, and Ümit V. Çatalyürek. Acyclic
partitioning of large directed acyclic graphs. In 2017 17th IEEE/ACM international symposium on
cluster, cloud and grid computing (CCGRID), pages 371–380. IEEE, 2017.

[IKS75] Tadakatsu Ishiga, Tokinori Kozawa, and Shoji Sato. A logic partitioning procedure by interchanging
clusters. In Proceedings of the 12th Design Automation Conference, pages 369–377, 1975.

[Kah62] Arthur B. Kahn. Topological sorting of large networks. Communications of the ACM, 5(11):558–562,
1962.

[KAKS97] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hypergraph par-
titioning: Application in VLSI domain. In Proceedings of the 34th annual Design Automation
Conference, pages 526–529, 1997.

[KK98] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998.

[LLH+16] Weifeng Liu, Ang Li, Jonathan Hogg, Iain S. Duff, and Brian Vinter. A synchronization-free algorithm
for parallel sparse triangular solves. In Euro-Par 2016: Parallel Processing: 22nd International
Conference on Parallel and Distributed Computing, Grenoble, France, August 24-26, 2016, Proceedings
22, pages 617–630. Springer, 2016.

[LNL20] Zhengyang Lu, Yuyao Niu, and Weifeng Liu. Efficient block algorithms for parallel sparse triangular
solve. In Proceedings of the 49th International Conference on Parallel Processing, pages 1–11, 2020.

[May09] Jan Mayer. Parallel algorithms for solving linear systems with sparse triangular matrices. Computing,
86:291–312, 2009.

[MSQ03] Shang Mingsheng, Sun Shixin, and Wang Qingxian. An efficient parallel scheduling algorithm of
dependent task graphs. In Proceedings of the Fourth International Conference on Parallel and
Distributed Computing, Applications and Technologies, pages 595–598. IEEE, 2003.

[PA92] Alex Pothen and Fernando L. Alvarado. A fast reordering algorithm for parallel sparse triangular
solution. SIAM journal on scientific and statistical computing, 13(2):645–653, 1992.

[PAKY24] Pál András Papp, Georg Anegg, Aikaterini Karanasiou, and Albert-Jan N. Yzelman. Efficient Multi-
Processor Scheduling in Increasingly Realistic Models. In Proceedings of the 36th ACM Symposium
on Parallelism in Algorithms and Architectures. ACM, 2024.

[PSSD14] Jongsoo Park, Mikhail Smelyanskiy, Narayanan Sundaram, and Pradeep Dubey. Sparsifying syn-
chronization for high-performance shared-memory sparse triangular solver. In Supercomputing: 29th
International Conference, ISC 2014, Leipzig, Germany, June 22-26, 2014. Proceedings 29, pages
124–140. Springer, 2014.

[PSSS21] Merten Popp, Sebastian Schlag, Christian Schulz, and Daniel Seemaier. Multilevel Acyclic Hyper-
graph Partitioning. In 2021 Proceedings of the Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 1–15. SIAM, 2021.

[RG92] Edward Rothberg and Anoop Gupta. Parallel ICCG on a hierarchical memory multiproces-
sor—addressing the triangular solve bottleneck. Parallel Computing, 18(7):719–741, 1992.

[RVG02] Andrei Radulescu and Arjan J. C. Van Gemund. Low-cost task scheduling for distributed-memory
machines. IEEE Transactions on Parallel and Distributed Systems, 13(6):648–658, 2002.

[Sal90] Joel H. Saltz. Aggregation methods for solving sparse triangular systems on multiprocessors. SIAM
journal on scientific and statistical computing, 11(1):123–144, 1990.

[Sch20] Sebastian Schlag. High-Quality Hypergraph Partitioning. PhD thesis, Karlsruher Institut für Tech-
nologie (KIT), 2020. 46.12.02; LK 01.

[SMB88] Joel H. Saltz, Ravi Mirchandaney, and Doug Baxter. Run-time parallelization and scheduling of
loops. Technical report, Institute for Computer Applications in Science and Engineering, NASA
Langley Research Center, 1988.

[TW67] William F. Tinney and John W. Walker. Direct solutions of sparse network equations by optimally
ordered triangular factorization. Proceedings of the IEEE, 55(11):1801–1809, 1967.

[Val90a] Leslie G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103–
111, 1990.

[Val90b] Leslie G. Valiant. General purpose parallel architectures. In Algorithms and Complexity, pages
943–971. Elsevier, 1990.

[WS18] Huijun Wang and Oliver Sinnen. List-scheduling versus cluster-scheduling. IEEE Transactions on
Parallel and Distributed Systems, 29(8):1736–1749, 2018.

[YSAU20] Buse Yılmaz, Buğrra Sipahioğrlu, Najeeb Ahmad, and Didem Unat. Adaptive level binning: A new
algorithm for solving sparse triangular systems. In Proceedings of the International Conference on
High Performance Computing in Asia-Pacific Region, pages 188–198, 2020.

EFFICIENT PARALLEL SCHEDULING FOR SPARSE TRIANGULAR SOLVERS 28

[ZCL+22] Behrooz Zarebavani, Kazem Cheshmi, Bangtian Liu, Michelle Mills Strout, and Maryam Mehri
Dehnavi. HDagg: hybrid aggregation of loop-carried dependence iterations in sparse matrix compu-
tations. In 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
1217–1227. IEEE, 2022.

	1. Introduction
	2. Background
	3. The GrowLocal scheduler
	4. Acyclicity-preserving graph coarsening
	5. Reordering for locality
	6. Experimental setup
	7. Evaluation
	8. Conclusion and future directions
	Appendix A. Tables of matrices
	Appendix B. Time and space complexity of GrowLocal
	Appendix C. Further discussion
	References

