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Abstract. The well-studied red-blue pebble game models the execution
of an arbitrary computational DAG by a single processor over a two-level
memory hierarchy. We present a natural generalization to a multiproces-
sor setting where each processor has its own limited fast memory, and
all processors share unlimited slow memory. To our knowledge, this is
the first thorough study that combines pebbling and DAG scheduling
problems, capturing the computation of general workloads on multiple
processors with memory constraints and communication costs. Our peb-
bling model enables us to analyze trade-offs between workload balancing,
communication and memory limitations, and it captures real-world fac-
tors such as superlinear speedups due to parallelization.
Our results include upper and lower bounds on the pebbling cost, an
analysis of a greedy pebbling strategy, and an extension of NP-hardness
results for specific DAG classes from simpler models. For our main tech-
nical contribution, we show two inapproximability results that already
hold for the long-standing problem of standard red-blue pebbling: (i) the
optimal I/O cost cannot be approximated to any finite factor, and (ii)
the optimal total cost (I/O+computation) can only be approximated to
a limited constant factor, i.e., it does not allow for a polynomial-time
approximation scheme. These results also carry over naturally to our
multiprocessor pebbling model.
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1 Introduction

The computational requirements of modern applications, ranging from scientific
simulations to artificial intelligence, necessitate parallel data processing. How-
ever, developing parallel algorithms that efficiently divide (sub)tasks, manage
memory, and organize communication between processors presents significant
difficulties to computer scientists. One particular bottleneck for the performance
of parallel computations is due to data locality, i.e., the memory of modern hard-
ware features a hierarchical structure, and to process data, it has to be stored
in the lowest layer. Since the layers’ memory is limited in size, data movements
between them (called I/O operations) are necessary and impact the execution
time of computations significantly. The phenomenon becomes especially notice-
able when dealing with tasks involving basic operations on large amounts of
input data, e.g., the training of neural networks.

In this paper, we introduce a model offering improved insights into the chal-
lenges regarding I/O costs and limited memory in the context of parallel com-
puting. Our focus is directed toward the efficient execution of a specific computa-
tion by several processors (rather than the design of a parallel algorithm tailored
for a particular problem). We consider directed acyclic graphs (DAGs) as the
model for a computation. The nodes correspond to single operations, while the
directed edges express that the output data of a node is required as input for
another node, enforcing precedence constraints on their order of execution. We
are concerned with devising effective and efficient schedules for a given DAG and
number of processors with limited working memory.

Hong and Kung [21] introduced the red-blue pebble game to study the I/O
complexity of computations when executed by a single processor with a two-
level memory hierarchy. The processor has fast memory (working memory) of
limited capacity. Computing a node (and storing its output data in fast memory)
requires that its predecessors’ output data is stored in fast memory. To free up
space in fast memory, I/O operations can transfer data to (and back from) slow
memory, which has unlimited capacity.

In this model, available data is indicated by placing a pebble on the corre-
sponding node. Data stored in fast memory is represented by a red pebble, and
data in slow memory by a blue pebble. The game starts with an empty DAG.
A red pebble can be placed on a node (i.e., computing the node) if all its pre-
decessors have red pebbles on them. A red pebble can be placed on a node if
it already has a blue pebble, and vice versa (I/O operations). Any pebble can
be removed for free. The goal is to place pebbles on the sinks (outputs of the
computation) while minimizing the number of I/O operations. The number of
red pebbles used may not exceed a given fast memory capacity at any time.

Red-blue pebbling studies trade-offs between I/O costs and memory size. In
our paper, we extend this model to a setting where several processors compute
in parallel, and communication is organized via shared memory; this allows us
to study trade-offs between time, communication and memory size.

To familiarize ourselves with pebbling, consider the example DAG depicted
in Figure 1. First, assume that we pebble it using only 3 red pebbles on a single
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Fig. 1. A simple example DAG for pebbling.

processor. We may start by placing red pebbles on nodes v1 and v2, which then
permits us to place a red pebble on node v3. The red pebbles on v1 and v2 are
no longer needed and can be removed. Observe that to pebble node v4, we again
need all 3 red pebbles. Since v3 has an outgoing edge to node v5, which we did
not pebble yet, we place a blue pebble on v3 (casting our first I/O operation),
and then remove the red pebble from v3. Next, v4 (and its predecessors) can
be pebbled analogously to v3, leading to a configuration where we have a red
pebble on v4 and a blue pebble on v3. We use another I/O operation to put a red
pebble back on v3, since it has a blue pebble. Now, we can place a red pebble on
node v5, and then remove the red pebbles from v3 and v4. Note that we pebbled
the sub-graph in the dashed box with 2 I/O operations. Another I/O operation
places a blue pebble on v5. We pebble the subtree rooted v6 in an identical way
to the one rooted at v5. To finish, we bring a red pebble back to v5 with an I/O
step, and then place a red pebble on v7.

In contrast, consider pebbling the DAG with multiple processors for an intu-
itive description of our model. We use two processors p1 and p2 each having their
own set of 3 red pebbles. To place a red pebble on a node, its predecessors require
red pebbles of the same processor. We pebble the left and the right subtree of
node v7 with red pebbles of p1 and p2, respectively, using the strategy described
above for a single processor. All steps are executed in parallel, reducing both the
compute and I/O operations by a factor 2. The result is a configuration with a
red pebble of p1 and p2 on nodes v5 and v6, respectively.

Recall that with one processor, we needed two I/O operations to convert the
red pebble on v5 to blue and then back to red. In contrast, with two processors
we need I/O operations to ensure that we have red pebbles of the same processor
on v5 and v6. The required communication between the processors is done via
the shared memory (blue pebbles): We replace the red pebble of p1 on v5 by
a blue pebble, and then the blue pebble by a red pebble of p2. To finish the
computation, we place a red pebble of p2 on v7.

Our Contribution. We present the multiprocessor red-blue pebbling game (MPP),
which is a natural generalization of red-blue pebbling. MPP essentially com-
bines the areas of DAG pebbling problems (single-processor computation with
limited memory) and DAG scheduling problems (multiprocessor computation,
but with unlimited memory). The result is a simple yet expressive model that
captures computational costs, I/O costs incurred by memory limitations, and
inter-processor communication costs. Unlike earlier attempts to generalize red-
blue pebbling, MPP naturally combines these aspects into a single cost function,
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allowing for a convenient study of the trade-offs between these factors. These
trade-offs have been analyzed in detail for many concrete computations before
(e.g., matrix multiplication [25,24,40]), but not for arbitrary DAGs.

We first discuss the basic properties of MPP, including simple bounds on the
pebbling cost, NP-hardness for specific DAG classes, and the analysis of a simple
greedy approach. We also analyze how adding more processors (with the same,
or reduced amount of fast memory) can affect the pebbling problem, i.e., how
the optimal pebbling cost can change in the same DAG.

Then as our main technical result, we present two hardness results for ap-
proximating the optimal strategy in red-blue pebbling problems. Both of these
proofs already apply to single-processor red-blue pebbling, thus presenting novel
results for a problem that has been studied for several decades. Firstly, we show
that the minimal number of I/O steps in a pebbling cannot be approximated in
polynomial time to any finite multiplicative factor, or any additive n1−ε term
(for any ε > 0), unless P=NP. Secondly, we show that the minimal total cost
(including both I/O and computation steps) can only be approximated to a lim-
ited factor, i.e., there is a δ > 0 such that the optimum cannot be approximated
to a (1+δ) factor in polynomial time, unless P=NP; in other words, the problem
is APX-hard, allowing no PTAS. Both of these results carry over naturally to
our multiprocessor pebbling model.

2 Related Work

Pebble games on graphs are used to capture various aspects of computation. For
instance, the standard (black) pebble game [12,30] models general time-memory
trade-offs, with the results including bounds on achievable trade-offs [22,26,32]
and the complexity of computing pebbling strategies [18,13,36,2]. Other pebble
games aim to capture different properties of computing, such as non-determinism
or reversibility [3,11,15,6].

Hong and Kung [21] introduce the red-blue pebble game to study I/O com-
plexity, and derive lower bounds based on a DAG partition technique. It is
applied to specific computations in [17,31]. Further bounds on I/O costs were
derived with different methods in [23,35,19]. Other works [33,34,16] extend the
red-blue pebble game to single and multiple processors over memory hierarchies.
The work of [24,25] refines the technique of [21] and derive improved I/O lower
bounds for special DAGs. The bounds are extended to a multiprocessor setting
where workload is perfectly balanced. In contrast to MPP, these works do not
consider trade-offs between computation and I/O.

As for the complexity of computing optimal pebbling strategies, Demaine
and Liu [14] show that standard red-blue pebbling is PSPACE-complete, and
propose variations that are shown NP-complete. NP-hardness for red-blue peb-
bling with computation costs is also shown in [7]. The work of [28] shows an
inapproximability to a (2 − ε) factor, assuming the unique games conjecture.
The work of [9] presents a bi-criteria approximation for the optimal I/O cost to
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a poly log(n) factor, provided that it is allowed to violate the memory bound by
a poly log(n) factor.

Naturally, there are also several more realistic models that capture both par-
allelization and memory limitations, but these exhibit key differences from MPP.
The work of [5,10] studies the cost components (computation, different kinds of
I/O) separately, mostly assuming that I/O steps cannot be parallelized. Other
works assume simpler models regarding computation costs: they are not consid-
ered at all in [4], and are handled with artificial balance constraints in [37,19].
Moreover, these models are primarily used for studying specific computations
(e.g., Matrix multiplication, FFT) rather than arbitrary DAGs.

Valiant [39] introduces the bulk-synchronous parallel (BSP) computing model
with explicit synchronisation, which was extended later [38,27] to include data
locality and communication via shared memory. The model was further general-
ized to capture multi-processor/core architectures with multi-level memory [40].
These models describe practical compute systems more closely, and also match
our MPP model. There are also theoretical studies on DAG scheduling in BSP
[29], but without memory restrictions.

3 Model Definition

Our model for a computation is a directed acyclic graph (DAG) G = (V,E). We
use the notation n = |V | for the number of nodes. The in/out-degree of a node is
the number of its incoming/outgoing edges. We call nodes with in/out-degree 0
the source/sink nodes. Let ∆in denote the highest in-degree in our DAG, i.e., the
highest number of inputs to an operation in our computation; several previous
works on pebbling assume that ∆in is small, e.g., a constant [14,28]. Moreover,
we denote the set of positive integers by Z+, and use the notation [a] = {1, ..., a},
for a ∈ Z+. Our goal is to execute a computational DAG on k processors, each
having limited fast memory of size r, for parameters k, r ∈ Z+.

3.1 Single Processor Red-Blue Pebbling

Before introducing our parallel model, we briefly recap the single-processor red-
blue pebble game (SPP) [21], where we have a single processor with fast memory
of size r and unlimited slow memory. Nodes with red pebbles on them (denoted
R ⊆ V ) and nodes with blue pebbles on them (denoted B ⊆ V ) correspond to
the output data that is currently saved in fast and slow memory, respectively.
In order to pebble a DAG, the following rules can be applied:

(R1-S) Place a red pebble on a node that has a blue pebble,
(R2-S) Place a blue pebble on a node that has a red pebble,
(R3-S) Place a red pebble on a node if all its predecessors have red pebbles,
(R4-S) Remove a (red or blue) pebble.

The game starts with an empty DAG; rule (R3-S) allows us to place red
pebbles on source nodes. A pebbling strategy is a sequence of the rules which



6 T. Böhnlein, P.A. Papp, A.N. Yzelman

places pebbles on the sink nodes in the end, while the number of red pebbles does
not exceed r at any step. The I/O costs are the total number I/O operations,
i.e., applications of rules (R1-S) or (R2-S). The goal is to pebble a DAG with
minimum I/O costs. Most works on SPP analyze lower bounds on I/O cost for
a given DAG and memory limit r.

Additional variations of SPP have also been proposed to simplify SPP, make
it more realistic, or resolve the fact that this base SPP variant is not even in NP,
but rather PSPACE-complete. This is because the optimal pebbling sequence
can be super-polynomially long in extreme cases, since repeatedly deleting and
recomputing the same node incurs no cost. Notable SPP variants include:
– One-shot SPP: (R3-S) can be applied only once for each node [9],
– No-deletion SPP: (R4-S) is not allowed [14],
– SPP with computation costs: (R3-S) also incurs a small cost of ε [28,7].

The first two variants feature somewhat artificial restrictions to prohibit the
deletion and then recomputation of a node entirely. On the other hand, SPP
with computation costs is more realistic, discouraging this in a natural way by
ensuring that computation steps also incur some cost, as in practice. This last
SPP variant is also the closest one our multiprocessor pebbling model.

We note that besides this, there are also smaller aspects of the definition that
vary over different previous works. For instance, some papers assume instead that
source nodes already have a blue pebble initially, or that sink nodes specifically
need to have a blue pebble in the end; this is also the case in the original work
of [21]. For most proof constructions, these model variants can be reduced to
each other with some simple tricks; we refer to [28] for a summary. Similarly,
some works assume in rule (R1-S) that the new red pebble replaces the blue
pebble, and in rule (R2-S) vice versa [28,19]; our SPP-related claims also carry
over easily to this variant.

3.2 Multiple Processor Red-Blue Pebbling

We introduce the multiprocessor red-blue pebble game (MPP) which extends
red-blue pebbling to a setting where k processors compute a DAG in parallel.
Data stored in a processor’s fast memory is represented by a red pebble of its
shade, i.e., there are red pebbles of k different shades. The number of red pebbles
of each shade is limited by r. The processors share unlimited slow memory that is
used to (i) store data that cannot be kept in fast memory, and (ii) to communicate
data between processors. Data available in the slow memory is represented by
blue pebbles. Note that we assume that several pebbles of different shade/color
can be placed on a node at the same time.

In our parallel version of the game, the rules allow multiple processors to
simultaneously either transfer data between fast and slow memory, or compute
nodes. More formally, define set Rj ⊆ V as the set of red pebbles of shade j, for
j ∈ [k], and set B ⊆ V as the set of blue pebbles. For m ∈ Z+ such that m ≤ k,
we call an injective function fm : [m] → [k] a shaded selection, and extend the
transition rules as follows:
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(R1-M) For a shaded selection fm and vertices v1, v2, . . . , vm such that vi ∈
Rfm(i), add vi to B, for i ∈ [m],

(R2-M) For a shaded selection fm and vertices {v1, v2, . . . , vm} ⊆ B, add vi to
Rfm(i), for i ∈ [m],

(R3-M) For a shaded selection fm and vertices v1, v2, . . . , vm such that for all
predecessors u of vi we have u ∈ Rfm(i), for i ∈ [m], add vi to Rfm(i),
for i ∈ [m],

(R4-M) Remove a (red or blue) pebble.

A parallel version of (R4-M) could also be defined; we use this simpler version
since this rule will incur no cost. Note that any single rule places at most k
pebbles, and that processors can be idle.

A configuration is a (k+1)-tuple Ci = (R1
i , R

2
i , . . . , R

k
i , Bi) ⊆ V k+1 defining

red and blue pebbles placed on the DAG. A configuration Ci is valid if |Rj
i | ≤ r,

for j ∈ [k], i.e., it respects the fast memory size. An initial configuration C0

sets Rj
0 = ∅, for j ∈ [k], and B0 = ∅. Let S ⊆ V be the sink nodes. We

say configuration Ci is terminal, if S ⊆ Bi

⋃k
j=1 R

j
i holds. A pebbling strategy

(C0, C1, . . . , CT ), for T ∈ Z+, is a sequence of valid configurations such that (i)
Ci is obtained by applying a transition rule to Ci−1, for i ∈ [T ], and (ii) C0 and
CT are initial and terminal, respectively. Equivalently, the pebbling strategy can
be represented by a sequence of transition rules (t1, t2, . . . , tT ), where ti ∈ {(R1-
M), (R2-M), (R3-M), (R4-M)} such that Ci is the result of applying ti to Ci−1,
for i ∈ [T ]. To assign costs to a pebbling strategy, we assign costs to each rule.
Let g ∈ Z+ be a parameter specifying the cost of an I/O step. We define the
cost function for the transition rules as follows:
– c(ti) = g if ti = (R1-M) or (R2-M),
– c(ti) = 1 if ti = (R3-M),
– c(ti) = 0 if ti = (R4-M).

Then, the cost of a strategy C(t1, t2, . . . , tT ) =
∑T

i=1 c(ti) is the total costs of its
moves. Given a DAG G and parameters k, r, g ∈ Z+, the goal of MPP is to find
a minimum cost pebbling strategy. We denote the cost of the optimum pebbling
strategy by OPT.

3.3 Model Discussion

We first note that as in SPP, the rules of MPP allow for recomputation. Indeed,
when I/O is expensive, it can sometimes be beneficial to compute the same node
more than once; see Section 4 for an example.

Furthermore, the transition rules assume that the processors compute and
access memory synchronously. This simplifies the analysis greatly, enabling us
to formulate the cost function as a linear term of I/O and compute costs. How-
ever, in some practical settings, one processor may be computing while another
one is accessing memory. This could be modelled by allowing each processor in
a step to execute one of the SPP rules independently; however, assigning costs
to a pebbling strategy then becomes an intricate matter. We expect that most
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of the general reasoning about pebbling strategies also carries over to such an
asynchronous setting; it has been shown that the improvements from a non-
synchronous schedule are limited to a factor 2 [29]. Synchronization of com-
munication is also natural in some hardware architectures, and several parallel
programming models, like BSP [39], also feature synchronization steps.

While parallel computing models typically study trade-offs between compu-
tation time and communication, SPP studies trade-offs between I/O costs and
memory size. Combining these in MPP allows us to study the three-fold trade-off
between computation time, communication, and memory size. The I/O steps in
MPP can happen either due to (i) communicating data between processors, or
(ii) saving data to slow memory to free up space in fast memory.

We note that several models in previous works are closely related to MPP; we
discuss these in detail in the full version of the paper [8]. For instance, [19] also
outlines a generalization of SPP to multiple processors; however, in contrast to
MPP, their work captures computation costs via an artificial balance constraint,
which imposes heavy limitations on the model. We also note that with r = ∞
and minor adjustments, MPP also becomes equivalent to DAG scheduling in
the BSP model [29]. This shows that with small variations, MPP is indeed a
generalization of both SPP and DAG scheduling problems.

4 Fundamental Properties of MPP

Straightforward bounds. Similarly to SPP, if r ≤ ∆in, then there can be no valid
pebbling strategy, since a node of in-degree ∆in requires (∆in + 1) red pebbles
of the same shade to be computed: ∆in on its in-neighbors, and one more on the
node itself. Thus we always implicitly assume r ≥ ∆in + 1.

However, if r ≥ ∆in+1, there is indeed always a valid pebbling. Consider the
nodes in any topological order. We can always select any processor p to compute
the next node v, load all the (already computed) in-neighbors of v from slow
memory to p (at a cost of at most ∆in ·g), compute the node on p (at a cost of
1), save the value of v to slow memory (at a cost of g), and then remove the red
pebbles from v and its in-neighbors (for free). This strategy incurs a cost of at
most (∆in +1) · g+1 for each node. On the other hand, since each (R3-M) step
can compute at most k nodes, the number of compute steps is at least n

k . This
shows the following simple bounds for the optimal cost.

Lemma 1. For any instance of MPP, we have n
k ≤ OPT ≤ (g · (∆in+1)+1) ·n.

A simple example gadget. We briefly discuss a simple example, the zipper gadget,
which highlights many vital aspects of pebbling problems, and different variants
of it are used throughout our proofs. We only describe the gadget and these
properties here on a high level, leaving the details to the full version [8]. The
gadget, shown in Figure 2, consists of two input groups S1, S2 of d nodes each,
and a main chain of n0 nodes, with the input groups having edges to the main
chain nodes in an alternating fashion. We typically have n0 = n−O(1) to make
S1 and S2 asymptotically irrelevant.
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...

...

v1
v2

v3
v4

v5
v6

u1

u2

ud

ud+1

ud+2

u2d

...

Fig. 2. Zipper gadget consisting of 2 input groups S1 = {u1, u2, . . . , ud} and S2 =
{ud+1, . . . , u2d}, and a main chain v1, . . . , vn0 . The edges going from the input groups
are combined into a single arrow for simplicity. The extension to discourage recompu-
tation is only illustrated for u1 in gray.

– The gadget was used in [28] to analyze trade-offs in SPP. E.g. for r=2d+2,
we can always keep red pebbles on both S1 and S2, and use the last 2 red
pebbles to compute the main chain without any I/O steps. However, for
r=d+2, we still need 2 red pebbles to compute along the main chain, so we
repeatedly need to move the other d red pebbles between S1 and S2, yielding
a much higher cost.

– This example with r = d+2 also highlights the role of recomputation: we
repeatedly need to move d red pebbles between S1 and S2, and doing this
with I/O steps (repeatedly loading from slow memory) incurs a cost of d·g for
each main chain node. However, since the nodes in S1 and S2 are sources, we
can also simply compute them again with (R3-M) steps anytime, at a much
lower cost of d per main chain node. To ensure that such a recomputation is
suboptimal, we can also attach a chain of length 2g in front of each ui: then
recomputing ui from a source node requires 2g + 1 compute steps, whereas
saving ui to slow memory and loading it back later costs at most 2g.

– Considering the gadget in MPP, if k = 1 and r = d+2, we again need to
keep moving the d red pebbles between S1 and S2, which incurs a cost of
(d·g+1) per main chain node. However, with k = 2 processors and r=d+2,
we can keep S1 and S2 in the fast memory of different processors, compute
the main chain alternatingly, and only communicate these main chain nodes.
This incurs a cost of (2·g+1) per chain node, and thus results in a superlinear
speedup for larger d values.

NP-Hardness. Regarding the complexity of MPP, it is not surprising that the
problem is NP-hard, since it generalizes SPP. However, MPP is already NP-hard
on rather simple DAGs.

Lemma 2. MPP is already NP-hard on the following subclasses of DAGs:

– 2-layer DAGs (where the longest path has length 1),
– in-trees (where every out-degree is at most 1).
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The lemma follows from [29], where the same results are established for BSP
scheduling; however, it requires some further work to adapt these proof con-
structions to MPP.

A Greedy Algorithm. It is also natural to wonder if we can obtain good solutions
e.g. by following a greedy pebbling strategy. We can derive a naive upper bound
on this approach, using the long known results that in DAG scheduling without
memory limits or communication costs, any non-idle greedy strategy is a 2-
approximation of the optimum [20]. Employing such a greedy approach for the
computations, and assuming the worst-case strategy discussed for Lemma 1, we
get the following bound.

Lemma 3. Any pebbling where the compute steps follow a non-idle greedy sched-
ule gives a 2 · (g · (∆in + 1) + 1)-factor approximation of the optimum.

Unsurprisingly, greedy strategies can also return rather bad solutions. In
general, it is even non-trivial to precisely define a greedy strategy for MPP, since
pebbling consist of various aspects. Here we make observations for a general class
of greedy strategies: we only assume that processor p always picks the next node
to compute as the yet uncomputed node with the largest number (or largest
fraction) of in-neighbors having a red pebble of p. We show a lower bound for
any such greedy strategy, regardless of how compute steps are parallelized, how
ties are broken, or how I/O steps are applied to compute the chosen node.

Lemma 4. There exist DAGs where any such greedy pebbling algorithm is worse
than the optimum
– by a 1

5 ·∆in−1 factor asymptotically (for any ∆in=O(1)),
– by a 2

3 ·g+1 factor asymptotically (for any g ≥ 2).

Lower Bounds on Pebbling Costs. We now discuss how we can apply lower
bounds on the number of required I/O steps from SPP to bound the optimum
cost in MPP. The key insight is that a pebbling strategy for MPP can be imple-
mented using a single processor (SPP) with fast memory of size r ·k. Specifically,
each parallel rule can be simulated using k sequential rules.

Lemma 5. Let G be a DAG such that an SPP pebbling strategy with fast mem-
ory of size k ·r requires at least L steps of I/O, for some L ∈ Z+. Then, an MPP
pebbling strategy with k processors, each having fast memory of size r, requires
at least L/k steps of I/O.

Corollary 1. Let G be a DAG such that an SPP pebbling strategy with fast
memory of size k · r requires at least L steps of I/O, for some L ∈ Z+. Then,
an MPP strategy with k processors and fast memory of size r each has cost of
at least g · L/k + n/k.

It follows that we can translate lower bounds for a single processor to k pro-
cessors. Indeed, many previous works [21,25] derive I/O lower bounds for specific
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computations in SPP, which are obtained utilizing a special DAG partition. For
example, Hong and Kung [21] derive a lower bound of n logn

log(rk) on the number of
required I/Os in SPP (with fast memory size r · k) for the n-point FFT DAG.
This translates to a lower bound of n

k · (g · logn
log(rk) + 1) on the cost in MPP for

the same DAG. Another well-studied computation is matrix-matrix multiplica-
tion. Kwasniewski et al. [25] improve the technique of [21] and derive a lower
bound of 2n3

√
rk

+ n2 in the single processor case, resulting in a lower bound of
n
k · (g · ( 2n2

√
rk

+ n) + 1) on the costs of matrix-matrix multiplication in MPP.
Finally, we show that there are instances where this bound is essentially tight.

Lemma 6. For any n, there is a DAG construction with OPT ≤ g ·L/k+n/k+
O(1) in MPP.

5 The Impact of More Processors: Trade-offs Between k,
r and OPT

We next analyze how more available processors can affect the optimal pebbling
strategy for a DAG, which captures fundamental trade-offs for parallel comput-
ing. For convenience, we compare the simplest case of 1 processor to k processors,
but our proofs are easy to carry over to any k-fold increase in the number of
processors. We use OPT(k) as a short notation for the optimal pebbling cost with
k processors.

There are two natural ways to do this comparison. Let r0 denote the amount
of fast memory in the 1-processor case. One option is to compare this to a
setting with k processors and r := r0

k fast memory on each; we call this the fair
comparison, as the total fast memory over all processors remains unchanged.
Another option is to compare to a setting with k processors and simply r := r0
for each, i.e., all processors having the same fast memory r0 as before. This
practical comparison is more relevant for applications, where computations are
often parallelized by simply employing more processors of the same kind.

“Fair” Comparison. We first compare the case of 1 processor with r= r0, to the
case of k processors with r= r0

k . This is an interesting setting: on the one hand,
the k processors allow for parallelization of computations and I/O, but on the
other hand, processors have less fast memory, possibly resulting in further I/O
steps to save and reload data. We first show that the optimum cost can decrease
by a factor k at most; intuitively, this is because in the fair case, any pebbling
strategy with k processors can be transformed into a 1-processor schedule with
at most k times the cost. The bound is tight, as can be seen in e.g. a DAG with
k independent chains of length n

k .

Lemma 7. In the fair case, we have OPT(k)

OPT(1) ≥ 1
k , and there are DAGs such that

OPT(k)

OPT(1) = 1
k .
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With the same fast memory scattered over k processors, the optimum can also
increase notably.

Lemma 8. In the fair case, there is a construction with

OPT(k)

OPT(1)
≥ k − 1

k
· g · (∆in − 1) + 1− o(1) .

Recall that OPT(1) ≥ n and OPT(k) ≤ (g · (∆in + 1) + 1) · n, so this bound
is essentially tight for large k and ∆in. Another construction shows that the
optimum can also be non-monotonic in k.

Lemma 9. In the fair case, we can have OPT(2)≤ OPT(1) and OPT(2)≤ OPT(4).

“Practical” Comparison. We now compare MPP with 1 and with k processors,
with the processor(s) having the same r = r0 in both cases. Here the larger k
value only comes with advantages, so the optimum can never increase; on the
other hand, it can easily decrease as before, e.g., for k independent chains. What
makes this setting more interesting is that the optimum can decrease by a factor
larger than k; such a superlinear speedup is a well-known (and highly desired)
phenomenon in real-world systems. To our knowledge, MPP is the first DAG
scheduling or pebbling model that naturally captures this behavior.

Lemma 10. In the practical case, for any ε > 0, we can have OPT(1)

OPT(2) ≥ ∆in−1
2 −ε.

The proof idea has already been outlined in Section 4 with the zipper gadget.
With the appropriate ∆in, the lemma can achieve a speedup of any constant
factor, already for k = 2.

The number of I/O steps. We also briefly study the number of I/O steps sep-
arately: let OPTI/O(k) denote the number of steps (R1-M) and (R2-M) in the
optimal pebbling with k processors. Our observations here hold for both the fair
and the practical case.

Since k = 1 requires no communication, whereas k = 2 might, it is easy to
construct a DAG where OPTI/O(1) = 0, but OPTI/O(2) = Θ(n). More surprisingly,
we can also have a similar decrease in I/O, i.e., a DAG with OPTI/O(1) = Θ(n),
but OPTI/O(2) = 0. Intuitively, this can happen when the computations can only
be distributed in a very imbalanced way, so with 2 processors, it becomes more
beneficial to do a lot of recomputations with one of the processors, instead of
using I/O steps.

6 Inapproximability

Given the NP-hardness of MPP, a natural follow-up question is whether the
optimum can be approximated to some factor in polynomial time. We show that
MPP is also hard from this perspective.
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Theorem 1. MPP is APX-hard: there is a constant δ > 0 such that no polynomial-
time algorithm can approximate the optimum to a (1+δ) factor, unless P = NP .

We prove this property already for the simplest case of k = 1, i.e., SPP with
computation costs. The proof can then easily be extended to any k value.

Lemma 11. SPP with computation costs is APX-hard.

Proof sketch. Our proof is motivated by a construction in [28], which reduces
one-shot SPP to vertex cover on a graph of N nodes to show another property.
However, this proof considers SPP, where (R3-S) compute steps are free, and
hence the proof is rather careless with the number of nodes, using very large
gadgets to ensure asymptotic behavior. As a result, the I/O cost is only Θ(N) =
o(n). With computation costs adding up to at least n in SPP, this makes the
I/O costs asymptotically irrelevant. Hence the reduction does not work directly
for pebbling models with computation cost.

To adapt this idea, we substantially decrease the size of gadgets to ensure
that n = O(N), and hence the I/O cost of any solution is in Θ(N) = Θ(n). By
design, in any reasonable solution, a specific part of this I/O cost is proportional
to the size of a vertex cover in the underlying graph; as such, an approximation
for the best pebbling could be transformed into an approximation of vertex cover.
The main ingredients of the proof are as follows:
– we show how to modify the node gadgets in the construction of [28] to reduce

their size to constant, thus ensuring that our construction has n = Θ(N)
altogether,

– we execute some further changes in the gadgets to avoid some other undesired
properties, which could be ignored in the original proof of [28] due to their
asymptotic analysis,

– we then show that in any reasonable pebbling, the I/O cost has a linear term
that is proportional to the size of a vertex cover in the underlying graph.

Altogether, this modified construction allows for an L-reduction to the vertex
cover problem in 3-regular graphs, which is known to be APX-hard [1]. This
implies that it is already NP-hard to find a pebbling of cost at most (1+ δ) ·OPT
for an appropriate δ > 0.

In general, the approximability of MPP is an intricate question, as the total
cost is often dominated by computation costs, which are at least n

k . Thus, even if
we have two solutions where I/O costs differ by a large factor, this can translate
to only a negligible difference in total cost. To better capture these differences,
we introduce an alternative cost metric.

Definition 1. Given an MPP pebbling of cost C, its surplus cost is C − n
k .

Intuitively speaking, surplus cost ignores this unavoidable cost of n
k , and

instead only measures “imperfections” in the pebbling, such as I/O steps, work
imbalance between the processors, and recomputations. In terms of this new
metric, finding a good solution is much more challenging: it is not possible to
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u1 u2 u3 u4 uℓ

v1 v2 v3 v4 vℓ′

u1 u2 u3 u4 uℓ

v1 v2 v3 v4 v5 v6 vℓ′

u1 u2 u3 u4 uℓ

v1 v2 vℓ′

Fig. 3. Examples of consecutive levels. The 1st level (bottom row) always has size
ℓ = 5. The 2nd level (top row) has ℓ′ = 5 on the left side, ℓ′ = 7 in the middle, and
ℓ′ = 3 on the right.

approximate the surplus cost in MPP to any finite factor. We again show this via
proving an inapproximability result in standard one-shot SPP (i.e. minimizing
I/O costs, with computations being free): we show that it is already NP-hard
here to distinguish the cases when OPT = 0 and when OPT ≥ n1−ε, for any ε > 0.

Theorem 2. In one-shot SPP, it is NP-hard to approximate the optimum to
any finite multiplicative factor, and to any additive n1−ε term (for any ε > 0).

Proof sketch. The main part of our proof is to develop a DAG construction
where it is already NP-hard to decide whether one-shot SPP has OPT = 0 or
OPT ≥ 1. After this, some technical steps allow for extending the same result to
an optimum of either 0 or n1−ε.

When looking for a solution of cost 0, pebbling becomes notably simpler:
blue pebbles cannot be used at all, since (R1-S) and (R2-S) incur cost. The
use of (R4-S) is also simple: without recomputation, a red pebble should be
deleted exactly when all out-neighbors have been pebbled. As such, a pebbling
is characterized by the order of the n computation steps.

We point out that pebbling with only (R3-S) and (R4-S) is essentially equiv-
alent to one-shot black pebbling, which is long known to be NP-hard [36]; as
such, the novelty of this part of our theorem is somewhat limited. However, [36]
considers a slightly different variant of pebbling, where compute steps can also
“slide” a pebble from an in-neighbor. It may also be possible to adapt the proof
in [36] to our case with further work; instead, we present a novel, somewhat
simpler reduction based on a different problem, and we also devise new gadgets
that might be of independent interest for future works on pebbling.

Our construction is organized into consecutive chains of level gadgets that
form towers. Intuitively, a pebbling strategy always needs to keep one level of
each tower in fast memory, and it can ‘proceed’ to the next level, computing the
nodes of the next level and deleting pebbles from the current level. There is no
benefit to having partially pebbled levels in our DAG, so intuitively, each level
can be considered a single entity in our analysis. To pebble the DAG correctly,
we need to go through the towers of levels in a carefully designed order, to ensure
that the current set of levels never requires more than r pebbles altogether. The
level gadgets are shown in Figure 3, and discussed in the full version [8].

Using these gadgets, we present a reduction from finding a clique of size q in
a graph G′. Our DAG has a main tower, which is used to control the number of
available pebbles at all times. We also add smaller tower gadgets for each node
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main level tower

1st level

2nd level

3rd level

4th level

5th level

6th level

7th level

8th level

9th level

1st level of node and edge gadgets

1st level of node and edge gadgets

2nd level of edge gadgets

2nd level of edge gadgets

last level of node and edge gadgets

node gadget

a

b1

b2

edge gadget

a

a

c1

c2

Fig. 4. High-level sketch of our construction: the main tower on the left, and node/edge
gadgets on the right, with the level sizes and the dependency between incident node-
edge pairs also shown.

and edge of G′, as illustrated in Figure 4. Furthermore, we draw edges between
specific levels of the node and edge gadgets whenever a node is incident to an
edge, and also between the main tower and all node and edge gadgets.

In the beginning, we can only pebble the 1st level of the main tower, then
the first level of each node/edge gadget, then the 2nd level of the main tower.
Proceeding to the 3rd level of the main tower then frees up many pebbles; we
can use these to proceed to the 2nd (and 3rd) level of node gadgets. However,
due to b2 > a, we can only move to the 3rd level of at most q node gadgets;
otherwise, we would not have enough remaining pebbles to reach the 4th level of
the main tower afterwards. Thus intuitively, any pebbling strategy corresponds
to selecting at most q node gadgets.

The next levels of the main tower allow/require us to move to the 2nd level
in edge gadgets. The 6th level again provides more free pebbles, so we can move
to the 3rd (and then 4th) level in any edge gadget, provided that both of its
incident nodes were chosen earlier. The next (7th) level then allows the fewest
free pebbles: we can only proceed to this level if we reached the 4th level in at
least

(
q
2

)
edge gadgets. This is only possible if we found a set of q nodes in G′

that span
(
q
2

)
edges. Finally, after this point, the pebbling is easy to finish. Hence

a pebbling of cost 0 exists if and only if G′ has a clique of size q.

The theorem directly carries over to surplus cost in MPP: given the same
DAG in MPP, a pebbling of cost 0 will translate to a surplus cost of 0, while
a pebbling with n1−ε I/O steps (or the same amount of recomputation) will
translate to a surplus cost of at least n1−ε.

Corollary 2. In MPP, it is NP-hard to approximate the optimum surplus cost
to any finite multiplicative factor, and to any additive n1−ε term (for any ε > 0).
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